В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√6). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√6 = √а
(3√6)² = (√а)²
9*6 = а
а=54;
b) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
с) y∈ [12; 21]. Найдите значение аргумента.
12 = √х
(12)² = (√х)²
х=144;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [144; 441] y∈ [12; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4
Неравенство у ≤ 2 выполняется при х <= 4.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√6). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√6 = √а
(3√6)² = (√а)²
9*6 = а
а=54;
b) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
с) y∈ [12; 21]. Найдите значение аргумента.
12 = √х
(12)² = (√х)²
х=144;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [144; 441] y∈ [12; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4
Неравенство у ≤ 2 выполняется при х <= 4.
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z