В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Masanet
Masanet
04.08.2021 04:08 •  Алгебра

Вычисли 0,12⋅600+(19)2⋅27.

Показать ответ
Ответ:
Zayka1231
Zayka1231
03.09.2020 00:57

‥・Здравствуйте, tima0604! ・‥

• ответ:

Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)

• Как и почему?

Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:

• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).

• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.

• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.

• 4. Привести подобные члены 3√21 и 2√21: -11+√21.

• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.

‥・С уважением, Ваша GraceMiller! :) ・‥

0,0(0 оценок)
Ответ:
dashasamoylova2
dashasamoylova2
01.09.2021 12:15

1) Проверим справедливость утверждения при n=1:

9^1 - 8\cdot1 - 1=9-8-1=0\ \vdots\ 16

2) Предположим, что при n=k утверждение справедливо, то есть:

(9^k - 8k- 1)\ \vdots\ 16

3) Докажем, что при n=k+1 справедливо утверждение:

\left(9^{k+1} - 8(k+1)- 1\right)\ \vdots\ 16

Доказательство. Преобразуем:

9^{k+1} - 8(k+1)- 1=9\cdot9^k - 8k-8- 1=

=(9^k- 8k-1)+8\cdot9^k -8=(9^k- 8k-1)+8(9^k -1)

Первое слагаемое 9^k- 8k-1 делится на 16 по предположению, сделанному на втором шаге.

9^{k+1} - 8(k+1)- 1=\underset{\vdots\ 16}{\underbrace{(9^k- 8k-1)}}+8(9^k -1)

Рассмотрим второе слагаемое 8(9^k -1). Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение 9^k при k\in\mathbb{N} дает нечетные числа, тогда числа вида 9^k -1 являются четными. Таким образом, второе слагаемое делится на 8\cdot2=16.

9^{k+1} - 8(k+1)- 1=\underset{\vdots\ 16}{\underbrace{(9^k- 8k-1)}}+\underset{\vdots\ 16}{\underbrace{8(9^k -1)}}

Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота