Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5
х(-15х-1)=0
х₁=0 или -15х-1=0
-15х=1
х₂=-1/15
ОТВЕТ: 0 или -1/15
2.9x²-4x=0
х(9х-4)=0
х₁=0 или 9х-4=0
х₂=4/9
ОТВЕТ: 0 или 4/9
3.7x-2x² = 0
х(7-2х)=0
х₁=0 или 7-2х=0
х₂=3,5
ОТВЕТ: 0 или 3,5
4.3x²=10x
3х²-10х=0
х(3х-10)=0
х₁=0 или 3х-10=0
х₂=10/3
ОТВЕТ: 0 или 10/3
5.x²=0,7x
х²-0,7х=0
х(х-0,7)=0
х₁=0 или х-0,7=0
х₂=0,7
ОТВЕТ: 0 или 0,7
6.4x²-4x=22x
4х²-4х-22х=0
4х²-26х=0
2х(2х-13)=0
х₁=0 или 2х-13=0
х₂=13/2
ОТВЕТ: 0 или 13/2
7.4x²-x=x+x²-4x
4х²-х²-х+3х=0
3х²+2х=0
х(3х+2)=0
х₁=0 или 3х+2=0
х₂=-2/3
ОТВЕТ: 0 или -2/3
8. 8x²-4x+1=1-x
8х²-4х+1-1+х=0
8х²-3х=0
х(8х-3)=0
х₁=0 или 8х-3=0
х₂=3/8
ОТВЕТ: 0 или 3/8
9.2x²-5x=x(4x-1)
2x²-5x=4x²-х
4x²-2x²-х+5х=0
2х²+4х=0
2х(х+2)=0
х₁=0 или х+2=0
х₂=-2
ОТВЕТ: 0 или -2
10.x²-2(x-4)=4(5x+2)
х²-2х+8=20х+8
х²-2х+8-20х-8=0
х²-22х=0
х(х-22)=0
х₁=0 или х-22=0
х₂=22
ОТВЕТ: 0 или 22