Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.
х=1 у= -2
Пошаговое объяснение:
Из второго уравнения получаем: (3х+у)= -2/ху
Подставляем в первое:
-2/ху (9х²+у²)=13
-18х/у -2у/х=13
-18х-2у²/х=13у
-18х²-2у²=13ху
18х²+13ху+2у²=0
Чтобы было проще, умножим обе части на 2!
(Приводим к формуле сокращенного умножения (х+у)²)
36х²+26ху+4у²=0
6²х²+2*6*2ху+2²у²= -2ху
(6х+2у)²= -2ху
2(3х+у)²= -ху
ху=-2(3х+у)²
Подставляем это во второе уранение:
-2(3х+у)² * (3х+у)=-2
(3х+у)³=1
3х+у=1
у=1-3х
Меняем у на вычисленное во втором уравнении:
х(1-3х) (3х+1-3х)=-2
х-3х=-2
-2х=-2
х=1
Вычисляем у подставив х=1 в выражение у=1-3х:
у=1-3
у= -2
Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.
х=1 у= -2
Пошаговое объяснение:
Из второго уравнения получаем: (3х+у)= -2/ху
Подставляем в первое:
-2/ху (9х²+у²)=13
-18х/у -2у/х=13
-18х-2у²/х=13у
-18х²-2у²=13ху
18х²+13ху+2у²=0
Чтобы было проще, умножим обе части на 2!
(Приводим к формуле сокращенного умножения (х+у)²)
36х²+26ху+4у²=0
6²х²+2*6*2ху+2²у²= -2ху
(6х+2у)²= -2ху
2(3х+у)²= -ху
ху=-2(3х+у)²
Подставляем это во второе уранение:
-2(3х+у)² * (3х+у)=-2
(3х+у)³=1
3х+у=1
у=1-3х
Меняем у на вычисленное во втором уравнении:
х(1-3х) (3х+1-3х)=-2
х-3х=-2
-2х=-2
х=1
Вычисляем у подставив х=1 в выражение у=1-3х:
у=1-3
у= -2
Объяснение: