1. Проведемо перпендикуляри з точок С і Д на ав. Позначимо їх знижки за умовою
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32