Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
2)Всего было подготовлено 30 билетов. Среди них 9 были однозначными. Таким образом вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 9:30=0,3
3)Представим, что у нас проводится эксперимент с пространством из 4 элементарных исходов, которые равновероятны. Элементарные исходы являются несовместными событиями (напомним, что несовместные события - это те, которые не могут произойти одновременно) , поэтому вероятность каждого из них равна 1/4 количество возможных. Допустим, нас интересует событие А, которое наступает только при реализации благоприятных элементарных исходов, количество последних 2 . Тогда, согласно классическому определению, вероятность такого события:
Р=2/4=0,5
4)Общее количество исходов при броске 2 игральных костей 6*6=36 Количество исходов благоприятствующих событию "Сумма выпавших очков равна 10" будет 3 (варианты 5:5, 4:6, 6:4) Значит вероятность наступления события "Сумма выпавших очков равна 10" будет 3/36=1/12.
5)Количество требуемых вариантов равно количеству четверок, у которых 2 цифры четные и 2 нечетные, Если позиция четных цифр зафиксирована, то таких четверок штук (т.к. количество нечетных цифр равно количеству нечетных и равно 5). Количество всевозможных расположений двух четных цифр среди четерех равно (их даже можно все перебрать: четные числа могут стоять на месте 1 и 2, 1 и3, 1 и 4, 2 и 3, 2 и 4, 3 и 4 - всего 6 расположений), поэтому общее число вариантов кода равно 6*5^4=3750.
6)Каждая команда сыграет 11 матчей.Значит 12*11,но в каждом матче принимают участие 2 команды.Итак получается 12*11/2=66 матчей
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
2)Всего было подготовлено 30 билетов. Среди них 9 были однозначными. Таким образом вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 9:30=0,3
3)Представим, что у нас проводится эксперимент с пространством из 4 элементарных исходов, которые равновероятны. Элементарные исходы являются несовместными событиями (напомним, что несовместные события - это те, которые не могут произойти одновременно) , поэтому вероятность каждого из них равна 1/4 количество возможных. Допустим, нас интересует событие А, которое наступает только при реализации благоприятных элементарных исходов, количество последних 2 . Тогда, согласно классическому определению, вероятность такого события:
Р=2/4=0,5
4)Общее количество исходов при броске 2 игральных костей 6*6=36 Количество исходов благоприятствующих событию "Сумма выпавших очков равна 10" будет 3 (варианты 5:5, 4:6, 6:4) Значит вероятность наступления события "Сумма выпавших очков равна 10" будет 3/36=1/12.
5)Количество требуемых вариантов равно количеству четверок, у которых 2 цифры четные и 2 нечетные, Если позиция четных цифр зафиксирована, то таких четверок штук (т.к. количество нечетных цифр равно количеству нечетных и равно 5). Количество всевозможных расположений двух четных цифр среди четерех равно (их даже можно все перебрать: четные числа могут стоять на месте 1 и 2, 1 и3, 1 и 4, 2 и 3, 2 и 4, 3 и 4 - всего 6 расположений), поэтому общее число вариантов кода равно 6*5^4=3750.
6)Каждая команда сыграет 11 матчей.Значит 12*11,но в каждом матче принимают участие 2 команды.Итак получается 12*11/2=66 матчей
7)Число равно:
20*19*18=6840
или по формуле размещений без повторений
20!/(20-3)!=18*19*20
Объяснение: