1. Сложите почленно неравенства:
a) 25>19 и 2>-7
25>19
+
2>-7
25+2>19+(-7)
27>12
б) -13,1<-5,3 и 0,5<9
-13.1<-5.3 + 0.5<9 = -13.1+0.5<-5.3+9 = -12.6<3.7
2. Перемножьте почленно неравенства:
а) 8>6 и 3>2,5
8>6 * 3>2.5 = 8*3>6*2.5 = 24>15
б) 3,2<4,5 и 0,5<9
3.2<4.5 * 0.5<9 = 3.2*0.5<4.5*9= 1.6<4.5
3. Зная,что 1<a<12 и 3<b<15
а) а+b
1<a<12
+ 3<b<15
4<a+b<27
б) a-b
-15<-b<-3
-14<a-b<9
в) ab
3<b<15
4<a*b<180
г) a/b
1/15<1/b<1/3
1/15<a/b<4
4. Оцените площадь прямоугольника со сторонами
a и b , если
7<a<8
4<b<5
28<a*b<40
В решении.
Объяснение:
1. Выполнить деление:
(27 + b³)/(81 - b⁴) : (b² - 3b + 9)/(b² + 9);
1) Преобразовать первую дробь:
в числителе сумма кубов, разложить по формуле:
3³ + b³ = (3 + b)(3² - 3b + b²) =
= (3 + b)(9 - 3b + b²);
В знаменателе разность кубов, развернуть:
81 - b⁴ = (9 - b²)(9 + b²);
Преобразованная первая дробь:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²);
2) Произвести деление:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²) : (b² - 3b + 9)/(b² + 9) =
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
= [(3 + b)(9 - 3b + b²) * (b² + 9)] / [(9 - b²)(9 + b²) * (9 - 3b + b²)] =
сократить (разделить) (9 - 3b + b²) и (9 - 3b + b²) на (9 - 3b + b²), (b² + 9) и )(9 + b²) на (9 + b²):
= (3 + b)/(9 - b²)=
в знаменателе разность квадратов, развернуть:
= (3 + b)/(3 - b)(3 + b)=
сократить (разделить) (3 + b) и (3 + b) на (3 + b):
= 1/(3 - b). Последний ответ.
2. Избавиться от иррациональности в знаменателе.
5/(√11 - √6);
Нужно умножить дробь (числитель и знаменатель) на сопряжённое выражение (√11 + √6):
5/(√11 - √6) * (√11 + √6)/(√11 + √6) =
= [5 * (√11 + √6)] / [ (√11 - √6) * (√11 + √6)] =
в знаменателе развёрнута разность квадратов, свернуть:
= [5 * (√11 + √6)] / [(√11)² - (√6)²] =
= [5 * (√11 + √6)] / [11 - 6] =
= [5 * (√11 + √6)] / 5 =
сократить 5 и 5 =
= (√11 + √6). Последний ответ.
3. Найти значение выражения 39a-15b+25, если (3a-6b+4)/(6a-3b+4)=7.
1) Избавиться от дробного вида второго выражения:
(3a-6b+4)/(6a-3b+4)=7
3a-6b+4 = 7(6a-3b+4)
раскрыть скобки:
3a-6b+4 = 42a - 21b + 28
привести подобные члены:
3a-6b-42+21b = 28-4
-39a+15b=24/-1
39a-15b= -24;
2) Подставить в первое выражение значение второго выражения:
39a-15b+25;
-24 + 25 = 1.
1. Сложите почленно неравенства:
a) 25>19 и 2>-7
25>19
+
2>-7
25+2>19+(-7)
27>12
б) -13,1<-5,3 и 0,5<9
-13.1<-5.3 + 0.5<9 = -13.1+0.5<-5.3+9 = -12.6<3.7
2. Перемножьте почленно неравенства:
а) 8>6 и 3>2,5
8>6 * 3>2.5 = 8*3>6*2.5 = 24>15
б) 3,2<4,5 и 0,5<9
3.2<4.5 * 0.5<9 = 3.2*0.5<4.5*9= 1.6<4.5
3. Зная,что 1<a<12 и 3<b<15
а) а+b
1<a<12
+ 3<b<15
4<a+b<27
б) a-b
1<a<12
-15<-b<-3
-14<a-b<9
в) ab
1<a<12
3<b<15
4<a*b<180
г) a/b
1<a<12
1/15<1/b<1/3
1/15<a/b<4
4. Оцените площадь прямоугольника со сторонами
a и b , если
7<a<8
4<b<5
28<a*b<40
В решении.
Объяснение:
1. Выполнить деление:
(27 + b³)/(81 - b⁴) : (b² - 3b + 9)/(b² + 9);
1) Преобразовать первую дробь:
в числителе сумма кубов, разложить по формуле:
3³ + b³ = (3 + b)(3² - 3b + b²) =
= (3 + b)(9 - 3b + b²);
В знаменателе разность кубов, развернуть:
81 - b⁴ = (9 - b²)(9 + b²);
Преобразованная первая дробь:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²);
2) Произвести деление:
(3 + b)(9 - 3b + b²)/(9 - b²)(9 + b²) : (b² - 3b + 9)/(b² + 9) =
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
= [(3 + b)(9 - 3b + b²) * (b² + 9)] / [(9 - b²)(9 + b²) * (9 - 3b + b²)] =
сократить (разделить) (9 - 3b + b²) и (9 - 3b + b²) на (9 - 3b + b²), (b² + 9) и )(9 + b²) на (9 + b²):
= (3 + b)/(9 - b²)=
в знаменателе разность квадратов, развернуть:
= (3 + b)/(3 - b)(3 + b)=
сократить (разделить) (3 + b) и (3 + b) на (3 + b):
= 1/(3 - b). Последний ответ.
2. Избавиться от иррациональности в знаменателе.
5/(√11 - √6);
Нужно умножить дробь (числитель и знаменатель) на сопряжённое выражение (√11 + √6):
5/(√11 - √6) * (√11 + √6)/(√11 + √6) =
= [5 * (√11 + √6)] / [ (√11 - √6) * (√11 + √6)] =
в знаменателе развёрнута разность квадратов, свернуть:
= [5 * (√11 + √6)] / [(√11)² - (√6)²] =
= [5 * (√11 + √6)] / [11 - 6] =
= [5 * (√11 + √6)] / 5 =
сократить 5 и 5 =
= (√11 + √6). Последний ответ.
3. Найти значение выражения 39a-15b+25, если (3a-6b+4)/(6a-3b+4)=7.
1) Избавиться от дробного вида второго выражения:
(3a-6b+4)/(6a-3b+4)=7
3a-6b+4 = 7(6a-3b+4)
раскрыть скобки:
3a-6b+4 = 42a - 21b + 28
привести подобные члены:
3a-6b-42+21b = 28-4
-39a+15b=24/-1
39a-15b= -24;
2) Подставить в первое выражение значение второго выражения:
39a-15b+25;
39a-15b= -24;
-24 + 25 = 1.