З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).