Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Объяснение:
Чтобы найти точку максимума, надо исследовать график производной на знак функции.
Найдём производную:
Чтобы найти точки максимума, приравняем производную к нулю.
Дробь равняется нулю, если числитель дроби равняется нулю, а знаменатель существует:
Решим их отдельно:
Решим нижнее неравенство методом интервалов. Для этого найдём корни уравнения
Метод интервалов подразумевает подстановку значений аргумента и установку знака функции.
Нас удовлетворяет второе условие, значит
Проверим, входит ли корень числителя в ОДЗ знаменателя:
Корень входит в ОДЗ.
Исследуем график производной на знак функции:
Знак функции сменяется с положительного на отрицательный, значит -8 - точка максимума.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.