Обозначим как X скорость третьей машины. К моменту старта третьей машины, первая успела проехать расстояние, равное: 0,5 (ч) * 50 (км/ч) = 25 (км) , а вторая: 0,5 * 40 = 20 (км). Расстояние между первой и третьей сокращается со скоростью X - 50 (км/ч), а между второй и третьей - со скоростью X - 40 (км/ч). Зная скорости и начальные расстояния, найдём время встречи третьей машины с первой и второй; составим уравнение: 25/(X-50) - 20/(X-40) = 1,5 (ч) ;домножим уравнение на 2(X-40)(X-50) : 50(X-40) - 40(X-50) = 3(X-40)(X-50) 50X -2000 -40X +2000 = 3X^2 -150X -120X +6000 3X^2 - 280X + 6000 = 0 X1 = 60 (км/ч) -скорость третьей машины X2 = 33 1/3 (км/ч) -ложный корень (т.к. по условию задачи скорость должна быть больше 50 км/ч)
Обозначим как X скорость третьей машины.
К моменту старта третьей машины, первая успела проехать расстояние, равное: 0,5 (ч) * 50 (км/ч) = 25 (км) , а вторая: 0,5 * 40 = 20 (км).
Расстояние между первой и третьей сокращается со скоростью X - 50 (км/ч), а между второй и третьей - со скоростью X - 40 (км/ч).
Зная скорости и начальные расстояния, найдём время встречи третьей машины с первой и второй; составим уравнение:
25/(X-50) - 20/(X-40) = 1,5 (ч) ;домножим уравнение на 2(X-40)(X-50) :
50(X-40) - 40(X-50) = 3(X-40)(X-50)
50X -2000 -40X +2000 = 3X^2 -150X -120X +6000
3X^2 - 280X + 6000 = 0
X1 = 60 (км/ч) -скорость третьей машины
X2 = 33 1/3 (км/ч) -ложный корень (т.к. по условию задачи скорость должна быть больше 50 км/ч)
{xy+x+y=11; {xy+x+y=11;
{x²y+xy²=30. ⇒ {xy(x+y)=30.
Пусть х+у=u; xy=v
{v+u=11;
{vu=30.
Решаем систему подстановки:
{v=11-u;
{(11-u)u=30.
Решаем второе уравнение системы
u²-11u+30=0
D=(-11)²-4·30=121-120=1
u₁=(11-1)/2=5 или u₂=(11+1)/2=6
v₁=11-u₁=11-5=6 или v₂=11-6=5
Обратная замена
{x+y=5 или {x+y=6
{xy=6 {xy=5
{y=5-x {y=6-x
{x(5-x)=6 {x(6-x)=5
Решаем вторые уравнения систем:
x²-5x+6=0 x²-6x+5=0
D=25-24=1 D=36-20=16
x₁=(5-1)/2=2; x₂=(5+1)/2=3 x₃=(6-4)/2=1; x₄=(6+4)/2=5
y₁=5-2=3; y₂=5-3=2 y₃=6-1=5; y₄=6-5=1
О т в е т. (2;3) (3;2) (1;5) (5;1).