— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
• Решение:
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность: