Находим область определения 2.D(f)= (-бесконечность;+бесконечность)
найдем нули функции,т.е. пересечение с осью х. 3.f(x)=0
(х-1/3)(х-1/5)=0
х=1/3
x=1/5
4. Определим знак f(x) на каждом из полученных промежутков на которые область определения разбивается нулями функции.
+ _ _ _ +
..> точки закрашенные,т.к. знак строго меньше или равно
1/3 1/5
(Мы подставляем в исходное уравнение любое число вместо Х,кроме 1/3 и 1/5,в каждом промежутке
т.е. сначала берем любое число от - бесконечности до одной третьей и ставим в уравнение, потом также берем любое число от 1/3 до 1/5 и от 1.5 до бесконечности.
допустим в промежутке от - беск до 1.3 берем число 0,тогда (0-1/3)(0-1/5)
в первой скобке минус,во второй минус, минус на минус будет +. значит знак интервала будет сверху плюс и значит функция f(x) >0.
если х принадлежит (- бесконечность,1/3),то f(x) > 0.
Объяснение:
Чтобы задать функцию нужно найти закономерность (формулу) перехода от координаты х к координате у
1) 1 таблица
1⇒1*3=3
2⇒2*3=6
3⇒3*3=9
4⇒4*3=12
Легко видеть что идет умножение на число 3
тогда функция будет иметь вид y=3x
2) 2 таблица
все значения "у" отличаются от первой таблицы на 1
значит надо просто к "формуле" добавить 1
тогда функия будет иметь вид y=3x+1
3) 3 таблица
все значения "у" отличаются от первой таблицы на 1 (только теперь меньше)
значит надо просто из "формуле" вычесть 1
тогда функия будет иметь вид y=3x-1
4) 4 таблица
все значения "у" отличаются от первой таблицы на "знак"
значит надо просто первую формулу сделать отрицательной
тогда функия будет иметь вид y= -3x
5) 5 таблица
все значения "у" отличаются от четвертой таблицы на 1 (больше)
значит надо просто к 4 "формуле" добавить 1
тогда функия будет иметь вид y= -3x+1
6) 6 таблица
А вот тут линейной закономерности не будет .
Это легко видеть на рисунке (см. приложение)
Вывод: по данной таблице задать функцию нельзя
Если бы в таблице стояли значения
1⇒ -4
2⇒-7
3⇒-10
4⇒-13
То функция имела бы вид у= -3х-1
(х-1/3)(х-1/5)<=0.
1.Рассмотрим функцию f(x)= (х-1/3)(х-1/5)
Находим область определения 2.D(f)= (-бесконечность;+бесконечность)
найдем нули функции,т.е. пересечение с осью х. 3.f(x)=0
(х-1/3)(х-1/5)=0
х=1/3
x=1/5
4. Определим знак f(x) на каждом из полученных промежутков на которые область определения разбивается нулями функции.
+ _ _ _ +
..> точки закрашенные,т.к. знак строго меньше или равно
1/3 1/5
(Мы подставляем в исходное уравнение любое число вместо Х,кроме 1/3 и 1/5,в каждом промежутке
т.е. сначала берем любое число от - бесконечности до одной третьей и ставим в уравнение, потом также берем любое число от 1/3 до 1/5 и от 1.5 до бесконечности.
допустим в промежутке от - беск до 1.3 берем число 0,тогда (0-1/3)(0-1/5)
в первой скобке минус,во второй минус, минус на минус будет +. значит знак интервала будет сверху плюс и значит функция f(x) >0.
если х принадлежит (- бесконечность,1/3),то f(x) > 0.
если х прнадлежит (1/3;1/5),то f(x) <0
если x прин-т (1/5;+ бесконечность),то f (x) >0
ответ [1/3; 1/5] скобки квадратные