23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Р= 2×(a+b) =26 см
S= a×b = 36 см²
По условию задачи получается система уравнений:
{2×(а+b)=26
{ab= 36
{a+b =26/2 ⇒ b = 13-a
{ab=36
Подставим значение переменной b во второе уравнение:
а(13-а) =36
13а -а²=36
0= 36-13a +a ²
а² -13а +36 =0
D= (-13)² -4 *36 *1= 169-144=25
D>0 - два корня уравнения , √D=5
a₁= (13-5)/2 = 8/2=4
a₂= (13+5)/2 = 18/2 = 9
b₁= 13-4=9
b₂= 13-9 =4
Оба ответа удовлетворяют условию задачи.
Р= 2×(4+9) = 2×13=26 см ; S= 4*9= 36 см²
ответ : 9 см и 4 см - стороны прямоугольника.
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число