где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Как решать квадратные уравнения? Смотри. Уравнение: ах^2+bx+c=0 называется квадратным. Например, х^2-х-6=0 Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac. Найдём дискриминант нашего уравнения: Д=(-1)^2-4*1*(-6)=1+24=25. А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта. Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а. Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a. А если дискриминант меньше нуля - то корней нет. Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля: х_1,2=(1+-√25)/2=(1+-5)/2. Это формула двух корней. А теперь найдём каждый корень по отдельности: х_1=(1+5)/2=6/2=3; х_2=(1-5)/2=-4/2=-2. Корнями будут являться числа 3 и -2. Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Как решать квадратные уравнения?
Смотри. Уравнение: ах^2+bx+c=0 называется квадратным.
Например, х^2-х-6=0
Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac.
Найдём дискриминант нашего уравнения:
Д=(-1)^2-4*1*(-6)=1+24=25.
А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта.
Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а.
Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a.
А если дискриминант меньше нуля - то корней нет.
Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля:
х_1,2=(1+-√25)/2=(1+-5)/2.
Это формула двух корней. А теперь найдём каждый корень по отдельности:
х_1=(1+5)/2=6/2=3;
х_2=(1-5)/2=-4/2=-2.
Корнями будут являться числа 3 и -2.
Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)