ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
1. y= (1/x) + 34
2.(не уверен, но вроде) y=∛(1-х^3 )
3. да
Объяснение:
1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у
х-34=1/у
х=(1/у)+34
у=(1/х)+34
2. у^3=1-х^3
х^3=1-у^3
у=∛(1-х^3 )
3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2
и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в
х1>х2
-7х1<-7х2
10-7х1<10-7х2
выражение с х2 больше значит функция уменьшается, ответ да.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора