Объем работы (заказ) = 1 (целая) 1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа 1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе 2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет I рабочий самостоятельно 3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно 4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
Если дана некая функция y=f(x),то при замене x функции на любую другу переменную или выражение ,все X переходят в эти переменные или выражения;если же выполняют какое-то действие на всей функцией y=f(x),например домножают её на что-то,делят,вычитают из неё,прибавляют к ней,возводят в степень или вносят под корень,то оно действует на всю функцию(объяснил ,как Кличко))0): f(x)=5x+6 1)f(a+1)=5(a+1)+6=5a+5+6=5a+11 f(5-a)=5(5-a)+6=25-5a+6=31-5a f(a)-6=(5(a)+6)-6=5a+6-6=5a f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2 2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8 f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24 f(1-2a)=5(1-2a)+6=5-10a+6=11-10a -f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа
1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе
2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет
I рабочий самостоятельно
3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно
4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
f(x)=5x+6
1)f(a+1)=5(a+1)+6=5a+5+6=5a+11
f(5-a)=5(5-a)+6=25-5a+6=31-5a
f(a)-6=(5(a)+6)-6=5a+6-6=5a
f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2
2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8
f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24
f(1-2a)=5(1-2a)+6=5-10a+6=11-10a
-f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12