Задана функция y=f(x) и два значения аргумента x_1 и x_2. требуется установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента, и сделать схематический чертеж. f(x)=11^(1/(4+x) ), где x_1=-4, x_2=-2.
Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Надеюсь, вопрос оканчивается "…на 5 остаток 4" Отталкиваемся от признаков деления на: 2 - последняя цифра делится на 2(0, 2, 4, 6, 8); 4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96); 5 - последняя цифра делится на 5. Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99. Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
Отталкиваемся от признаков деления на:
2 - последняя цифра делится на 2(0, 2, 4, 6, 8);
4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96);
5 - последняя цифра делится на 5.
Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99.
Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.