а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
Рассмотрим функции и . Область определения функции есть промежуток , т.к. выражение имеет смысл только при неотрицательных значениях. Область значений функции является промежуток . Точки построения графика: (0;0), (1;1), (4;2), (9;3). Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
ответ: 2 корня.