Объем работы (заказ) = 1 (целая) 1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа 1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе 2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет I рабочий самостоятельно 3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно 4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа
1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе
2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет
I рабочий самостоятельно
3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно
4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2