Будем искать уравнение касательной в виде y-y0=k*(x-x0), где x0 и y0 - неизвестные пока координаты точки касания, k - угловой коэффициент касательной. Но так как k=tg(α), а по условию α=135°, то k=tg(135°)=-1. Теперь уравнение касательной можно записать в виде y-y0=-1*(x-x0). А так как точка касания принадлежит графику функции, то справедливо уравнение y0=5*x0²-2*x0. С другой стороны, k=y'(x0). Производная y'(x)=10*x-2, отсюда k=10*x0-2=-1, или 10*x0=1. Получена система из двух уравнений:
y0=5*x0²-2*x0
10*x0=1
Решая её, находим x0=0,1 и y0=-0,15. Тогда уравнение касательной таково: x-0,1=-1*(y+0,15), или 20*x-2=-20*y-3, или 20*x+20*y+1=0.
√(12+x)=1+ √(1-x)
Возводим в квадрат обе части уравнения
12+x=1+2 √(1-x)+(1-x)
12+x-1-1+x=2 √(1-x)
10+2x=2 √(1-x) Делим все на2
5+x= √(1-x)
Опять возводим в квадрат
25+10x+x^2=1-x
x^2+10x+x+25-1=0
x^2+11x+24=0
D=121-4*24
D=25
x1=(-11+5)/2=-3
x2=(-11-5)/2=-8
Делаем обязательно проверку
x1=-3
√(12-3)- √(1+3)= 1
√9- √4=3-2=1
1=1. Значит х1=-3 корень
x2=-8
√(12-8)- √(1+8)= 1
√(4- √(9)= 1. Получаем 2-3=-1
-1не=1. Значит x2=-8 посторонний корень
ответ: x=-3
Будем искать уравнение касательной в виде y-y0=k*(x-x0), где x0 и y0 - неизвестные пока координаты точки касания, k - угловой коэффициент касательной. Но так как k=tg(α), а по условию α=135°, то k=tg(135°)=-1. Теперь уравнение касательной можно записать в виде y-y0=-1*(x-x0). А так как точка касания принадлежит графику функции, то справедливо уравнение y0=5*x0²-2*x0. С другой стороны, k=y'(x0). Производная y'(x)=10*x-2, отсюда k=10*x0-2=-1, или 10*x0=1. Получена система из двух уравнений:
y0=5*x0²-2*x0
10*x0=1
Решая её, находим x0=0,1 и y0=-0,15. Тогда уравнение касательной таково: x-0,1=-1*(y+0,15), или 20*x-2=-20*y-3, или 20*x+20*y+1=0.
ответ: x0=0,1.