D(y)=[-2;+∞)- область определения данной функции. Cоставим уравнение касательной к кривой в точке z y(z)=√(z+2); y`(x)=1/2√(x+2) y`(z)=1/2√(z+2) Уравнение у-у(z)=y`(z)(x-z) y-√(z+2)=(x-z)/2√(z+2) Найдем точки пересечения касательной с осями координат При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2) При у=0 x-z=-2(z+2) ⇒x=-z-4 Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)| Площадь прямоугольного треугольника находим по формуле как половину произведения катетов: S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2) S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2) S`(z)=0 3z+4=0 z=-4/3 y(-4/3)=√((-4/3)+2)=1/√3 О т в е т.(-4/3; 1/√3)
Задача не имеет одного решения по поводу середины стороны ВС - вершины могут идти по часовой или Но координаты вершин известны: A(4;5) и C(-2;-1). Координаты соответствуют границам квадрата - правая сторона проходит по х=4, левая - по х=-2. Верхняя - по у=5, нижняя - по у=-1. Проверяем - это действительно квадрат со стороной 6. Вершины квадрата Вариант расположения по часовой стрелке D(-2;5) А(4;5)
С(-2;-1) В(4;-1)
Или (Вариант расположения против часовой стрелки) В(-2;5) А(4;5)
С(-2;-1) D(4;-1) Соответственно координата точки, которая делит сторону ВС пополам - Е(1;-1) или Е(-2;2).
Cоставим уравнение касательной к кривой в точке z
y(z)=√(z+2);
y`(x)=1/2√(x+2)
y`(z)=1/2√(z+2)
Уравнение
у-у(z)=y`(z)(x-z)
y-√(z+2)=(x-z)/2√(z+2)
Найдем точки пересечения касательной с осями координат
При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2)
При у=0 x-z=-2(z+2) ⇒x=-z-4
Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)|
Площадь прямоугольного треугольника находим по формуле как половину произведения катетов:
S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2)
S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2)
S`(z)=0
3z+4=0
z=-4/3
y(-4/3)=√((-4/3)+2)=1/√3
О т в е т.(-4/3; 1/√3)
A(4;5) и C(-2;-1). Координаты соответствуют границам квадрата - правая сторона проходит по х=4, левая - по х=-2. Верхняя - по у=5, нижняя - по у=-1. Проверяем - это действительно квадрат со стороной 6.
Вершины квадрата
Вариант расположения по часовой стрелке
D(-2;5) А(4;5)
С(-2;-1) В(4;-1)
Или (Вариант расположения против часовой стрелки)
В(-2;5) А(4;5)
С(-2;-1) D(4;-1)
Соответственно координата точки, которая делит сторону ВС пополам - Е(1;-1) или Е(-2;2).