Зависимость температуры (в градусах кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур дается выражением: t(t) = t0 + bt + at2 где t0 = 1450 к, a = −30 к/мин, b = 180 к/мин2. известно, что при температуре нагревателя свыше 1600 к прибор может испортиться, поэтому его нужно отключать. определите (в минутах), через какое наибольшее время после начала работы нужно отключать прибор. в правильной четырехугольной пирамиде sabcd с основанием abcd боковое ребро sc равно 37, сторона основания равно 35корень из 2. найдите обьем пирамиды первый сплав содержит 5% меди,второй 13% меди. масса второго сплава больше массы первого на 9 кг. из двух сплавов получили третий сплав .содержащий 11% меди. найдите массу третьего сплава.ответ в кг ,решив это уравнение найдите значение функции у=е^2х-2е^х+8 на отрезке [-2 ; 1]
1) Подставляем в формулу все известные значения и вычисляем. Но помним, что нам нужно наибольшее время, поэтому формула превращается в неравенство.
T(t) = 1600
1600 >= 1450 + 180*t - 30*t²
0>= -30*t² +180t - 150 ⇔ 0>=-t² + 6t - 5 Нули: t₁ = 1 t₂ = 5 итого имеем t∈(-∞;1] и [5;+∞)
ответ: 1 (потом прибор "умирает")
2) V=1/3*S(осн)*H S(осн)= 35√2*35√2 = 2450 H = √((37)² - (35)²) = √(1369 - 1225) = 12 V = 1/3 * 2450 * 12 = 2450 * 4 = 9800
ответ: 9800
3) Ур-е получается такое: 0,11(2x + 9)=0,05x + 0,13(x+9)
0,22x + 0,99 - 0,05x - 0,13x - 1,17 = 0
0,04x = 0,18
x = 4,5
ответ: 4,5
4) Находим производную: y' = 2e^2x - 2e^x
Приравниваем к нулю производную, находим корни, проставляем знаки, находим наименьшее/наибольшее (в зависимости от задания, здесь я этого не вижу - пропустили) значение ф-ции: 2e^2x - 2e^x=0
2e^x(e^x - 1) = 0 e^x никогда нулем быть не может ⇒ e^x -1 = 0 e^x = 1 (любое число, возведенное в нулевую степень, есть единица) ⇒ x= 0 (ок, 0 подходит в указанный промежуток)
Итак, x=0 - точка минимума (по-видимому, и спрашивается найти наименьшее значение ф-ции) При x=0 y= 1 -2 + 8 = 7
ответ: 7