Область определения sin 2x =/= 0; 2x =/= pi*k; x =/= pi/2*k Раскрываем модуль 1) sin 3x*sin 5x < 0, тогда |sin 3x*sin 5x| = -sin 3x*sin 5x Это может быть в двух случаях, когда синусы имеют разные знаки Но решать это долго и трудно, проще решить уравнение, а потом подставить корни и проверить. (cos 3x*cos 5x - sin 3x*sin 5x) / sin 2x = 2cos 2x cos(3x + 5x) = 2cos 2x*sin 2x cos 8x = sin 4x 1 - 2sin^2 (4x) = sin (4x) 2sin^2 (4x) + sin (4x) - 1 = 0 (sin (4x) + 1)(2sin (4x) - 1) = 0 a) sin 4x = -1; 4x = 3pi/2 + 2pi*k; x1 = 3pi/8 + pi/2*k Проверяем при k = 0 sin 3x = sin (9pi/8) = -0,3826 < 0 sin 5x = sin (15pi/8) = -0,3826 < 0 При k = 1 sin 3x = sin (9pi/8 + 3pi/2) = sin (21pi/8) = 0,9238 > 0 sin 5x = sin (15pi/8 + 5pi/2) = sin (35pi/8) = 0,9238 > 0 Этот корень не подходит, потому что sin 3x*sin 5x > 0 b) sin 4x = 1/2; 4x = pi/6 + 2pi*n; x2 = pi/24 + pi/2*n 4x = 5pi/6 + 2pi*n; x3 = 5pi/24 + pi/2*n Эти корни проверьте сами.
2) sin 3x*sin 5x > 0, тогда |sin 3x*sin 5x| = sin 3x*sin 5x (cos 3x*cos 5x + sin 3x*sin 5x) / sin 2x = 2cos 2x cos 2x / sin 2x = 2cos 2x cos 2x = 2cos 2x*sin 2x cos 2x*(1 - 2sin 2x) = 0 a) cos 2x = 0; 2x = pi/2 + pi*k; x1 = pi/4 + pi/2*k b) sin 2x = 1/2; 2x = pi/6 + 2pi*n; x2 = pi/12 + pi*n 2x = 5pi/6 + 2pi*n; x3 = 5pi/12 + pi*n Эти три корня тоже проверьте сами. Здесь должно быть sin 3x*sin 5x > 0
3.1
-2х²+3х+2=0;
2х²-3х-2=0;
х=(3±√(9+16))/4=(3±5)/4 х=8/4=2 ;х=-1/2
Решим неравенство методом интервалов.
-1/22
- + -
х∈(-∞;-1/2)∪(2;+∞)
наибольшее отрицательное можно найти если среди целых, то -1, наименьшее положительное, если среди целых, то 3.
иначе нет. либо, если бы было условие нестрогого неравенства.
3.2
пусть первоначальная скорость была х, тогда учитывая, что 20 мин. =(1/3)ч., получим уравнение
40/х-40/(х-10)=1/3
х≠0; х≠10
3*40*(х-х+10)=х²-10х
х²-10х-1200=0 По Виету х= -30 - не подходит по смыслу задачи.
х=40
ответ 40 км/ч
sin 2x =/= 0; 2x =/= pi*k; x =/= pi/2*k
Раскрываем модуль
1) sin 3x*sin 5x < 0, тогда |sin 3x*sin 5x| = -sin 3x*sin 5x
Это может быть в двух случаях, когда синусы имеют разные знаки
Но решать это долго и трудно, проще решить уравнение, а потом подставить корни и проверить.
(cos 3x*cos 5x - sin 3x*sin 5x) / sin 2x = 2cos 2x
cos(3x + 5x) = 2cos 2x*sin 2x
cos 8x = sin 4x
1 - 2sin^2 (4x) = sin (4x)
2sin^2 (4x) + sin (4x) - 1 = 0
(sin (4x) + 1)(2sin (4x) - 1) = 0
a) sin 4x = -1; 4x = 3pi/2 + 2pi*k; x1 = 3pi/8 + pi/2*k
Проверяем при k = 0
sin 3x = sin (9pi/8) = -0,3826 < 0
sin 5x = sin (15pi/8) = -0,3826 < 0
При k = 1
sin 3x = sin (9pi/8 + 3pi/2) = sin (21pi/8) = 0,9238 > 0
sin 5x = sin (15pi/8 + 5pi/2) = sin (35pi/8) = 0,9238 > 0
Этот корень не подходит, потому что sin 3x*sin 5x > 0
b) sin 4x = 1/2;
4x = pi/6 + 2pi*n; x2 = pi/24 + pi/2*n
4x = 5pi/6 + 2pi*n; x3 = 5pi/24 + pi/2*n
Эти корни проверьте сами.
2) sin 3x*sin 5x > 0, тогда |sin 3x*sin 5x| = sin 3x*sin 5x
(cos 3x*cos 5x + sin 3x*sin 5x) / sin 2x = 2cos 2x
cos 2x / sin 2x = 2cos 2x
cos 2x = 2cos 2x*sin 2x
cos 2x*(1 - 2sin 2x) = 0
a) cos 2x = 0; 2x = pi/2 + pi*k; x1 = pi/4 + pi/2*k
b) sin 2x = 1/2;
2x = pi/6 + 2pi*n; x2 = pi/12 + pi*n
2x = 5pi/6 + 2pi*n; x3 = 5pi/12 + pi*n
Эти три корня тоже проверьте сами.
Здесь должно быть sin 3x*sin 5x > 0