Немного теории. Систему уравнений можно записать в следующем виде:
A·x = b
где A - матрица коэффициентов, x - вектор-столбец переменных, b - вектор-столбец свободных членов.
Умножим эту систему на обратную матрицу коэффициентов A⁻¹ слева. Тогда:
A⁻¹·A·x = A⁻¹·b
x = A⁻¹·b
Таким образом, чтобы решить систему уравнений, нужно найти обратную матрицу коэффициентов и умножить ее на вектор-столбец свободных членов.
1) Обратная матрица
Будем искать обратную матрицу через алгебраические дополнения. Для начала найдем определитель матрицы A :
Найдем элементы матрицы алгебраических дополнений:
Тогда:
Транспонированная матрица алгебраических дополнений:
Обратная матрица:
2) Вектор-столбец переменных
x₁ = 0;
x₂ = 1;
x₃ = -1.
x⁴=(3x-10)²
x⁴=9x²-60x+100
x⁴-9x²+60x-100=0
x₁=2
x⁴-9x²+60x-100 I_x-2
x⁴-2x³ I x³+2x²-5x+50
2x³-9x²
2x³-4x²
-5x²+60x
-5x²+10x
50x-100
0
x³+2x²-5x+50=0
x₂=-5
x³+2x²-5x+50 I_ x+5
x³+5x² I x²-3x+10
-3x²-5x
-3x²-15x
10x+50
x²-3x+10=0 D=-31 ⇒
Уравнение действительных корней не имеет.
ответ: х₁=2 х₂=-5.
Объяснение:
Удачи!!!
Немного теории. Систему уравнений можно записать в следующем виде:
A·x = b
где A - матрица коэффициентов, x - вектор-столбец переменных, b - вектор-столбец свободных членов.
Умножим эту систему на обратную матрицу коэффициентов A⁻¹ слева. Тогда:
A⁻¹·A·x = A⁻¹·b
x = A⁻¹·b
Таким образом, чтобы решить систему уравнений, нужно найти обратную матрицу коэффициентов и умножить ее на вектор-столбец свободных членов.
1) Обратная матрица
Будем искать обратную матрицу через алгебраические дополнения. Для начала найдем определитель матрицы A :
Найдем элементы матрицы алгебраических дополнений:
Тогда:
Транспонированная матрица алгебраических дополнений:
Обратная матрица:
2) Вектор-столбец переменных
ответ:x₁ = 0;
x₂ = 1;
x₃ = -1.
x⁴=(3x-10)²
x⁴=9x²-60x+100
x⁴-9x²+60x-100=0
x₁=2
x⁴-9x²+60x-100 I_x-2
x⁴-2x³ I x³+2x²-5x+50
2x³-9x²
2x³-4x²
-5x²+60x
-5x²+10x
50x-100
50x-100
0
x³+2x²-5x+50=0
x₂=-5
x³+2x²-5x+50 I_ x+5
x³+5x² I x²-3x+10
-3x²-5x
-3x²-15x
10x+50
10x+50
0
x²-3x+10=0 D=-31 ⇒
Уравнение действительных корней не имеет.
ответ: х₁=2 х₂=-5.
Объяснение:
Удачи!!!