Если дана некая функция y=f(x),то при замене x функции на любую другу переменную или выражение ,все X переходят в эти переменные или выражения;если же выполняют какое-то действие на всей функцией y=f(x),например домножают её на что-то,делят,вычитают из неё,прибавляют к ней,возводят в степень или вносят под корень,то оно действует на всю функцию(объяснил ,как Кличко))0): f(x)=5x+6 1)f(a+1)=5(a+1)+6=5a+5+6=5a+11 f(5-a)=5(5-a)+6=25-5a+6=31-5a f(a)-6=(5(a)+6)-6=5a+6-6=5a f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2 2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8 f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24 f(1-2a)=5(1-2a)+6=5-10a+6=11-10a -f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
f(x)=5x+6
1)f(a+1)=5(a+1)+6=5a+5+6=5a+11
f(5-a)=5(5-a)+6=25-5a+6=31-5a
f(a)-6=(5(a)+6)-6=5a+6-6=5a
f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2
2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8
f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24
f(1-2a)=5(1-2a)+6=5-10a+6=11-10a
-f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12