Раскроем модуль. (на фото) Получили кусочную функцию
При этом наш параметр а остался в обоих выражениях:
-9х - 31 + а при х≤-4 и х≥1
-3х² - 18х - 19 + а при -4<x<1
Стоит отметить что а - свободный член, с этого следует, что параметр а отвечает за перемещение нашего графика вверх-вниз относительно оси Оу. Построим нашу кусочную функцию: (фото)
По графику функции видно, что практически на всей области определения график будет иметь 1 пересечение с горизонтальной прямой (нашей осью абсцисс),в двух точках будет иметь 2 пересечения, и на определённом участке будет иметь целых 3 нужных нам пересечения.
При а = -5 наш график переносится на 5 клеток вниз относительно оси Оу, и теперь можно с уверенностью сказать, что при а ∈ (-5;-8) график имеет с осью абсцисс ровно 3 пересечения
ответ:при a ∈ (-5 ; -8) наша функция имеет с осью Ох 3 разных пересечения
Если из данной части вывести переменную х, добавив вместо звездочки, скажем, -(7x² - 8х²y), то останется выражение -3yz, не являющееся многочленом по определению.
Поэтому добавим к оставшемуся выражению -3yz еще у²:
7x² - 8x²y - 3yz + * = -3уz + у²
* = -3yz + y² - 7x² + 8x²y + 3yz
* = y² - 7x² + 8x²y
Вместо у² можно взять любой другой одночлен, не содержащий переменную х.
Раскроем модуль. (на фото) Получили кусочную функцию
При этом наш параметр а остался в обоих выражениях:
-9х - 31 + а при х≤-4 и х≥1
-3х² - 18х - 19 + а при -4<x<1
Стоит отметить что а - свободный член, с этого следует, что параметр а отвечает за перемещение нашего графика вверх-вниз относительно оси Оу. Построим нашу кусочную функцию: (фото)
По графику функции видно, что практически на всей области определения график будет иметь 1 пересечение с горизонтальной прямой (нашей осью абсцисс),в двух точках будет иметь 2 пересечения, и на определённом участке будет иметь целых 3 нужных нам пересечения.
При а = -5 наш график переносится на 5 клеток вниз относительно оси Оу, и теперь можно с уверенностью сказать, что при а ∈ (-5;-8) график имеет с осью абсцисс ровно 3 пересечения
ответ:при a ∈ (-5 ; -8) наша функция имеет с осью Ох 3 разных пересечения
1). 7x² - 8x²y - 3yz + *
Известная часть многочлена: 7x² - 8х²y - 3yz
Если из данной части вывести переменную х, добавив вместо звездочки, скажем, -(7x² - 8х²y), то останется выражение -3yz, не являющееся многочленом по определению.
Поэтому добавим к оставшемуся выражению -3yz еще у²:
7x² - 8x²y - 3yz + * = -3уz + у²
* = -3yz + y² - 7x² + 8x²y + 3yz
* = y² - 7x² + 8x²y
Вместо у² можно взять любой другой одночлен, не содержащий переменную х.
2). (3n + 8) - (6 - 2n) = 3n + 8 - 6 + 2n = 5n + 2
При любом n ∈ N, выражение 5n + 2 при делении на 5 даст остаток 2.