В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Pandivan
Pandivan
13.02.2022 17:34 •  Алгебра

Знайдіть площу фігури, обмеженої лініями у=2х + х² і у=4+х

Показать ответ
Ответ:
sweta210
sweta210
08.10.2020 21:23

Даны функции у=2х + х² и у=4+х.

Находим границы их совместной площади.

2х + х² = 4 + х.

х² + х - 4 = 0.

Квадратное уравнение, решаем относительно x:

Ищем дискриминант:

D=1^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17;

Дискриминант больше 0, уравнение имеет 2 корня:

x_1 = (√17-1)/(2*1) = (√17-1)/2 ≈ 1.561553;

x_2 = (-√17-1)/(2*1) = (-√17-1)/2 ≈ -2.561553.

Площадь фигуры равна интегралу разности функций в полученных пределах.

S=\int\limits^{\sqrt{17-1}*0.5}_{-\sqrt{17-1}*0.5} {(x+4)-(x^2+2x)} \, dx =\frac{17\sqrt{17}}{6} ≈ 11,6821 кв.ед.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота