РешениеПусть скорость 2-ого велосипедиста х км/ч, а скорость 1-ого велосипедиста (х+1) км/ч. Тогда время, затраченное первым велосипедистом - 90/(х+1) ч, а время, затраченное вторым велосипедистом - 90/х ч. Составим уравнение: 90/(х+1)+1=90/х (90х + х² + х — 90х + 90)/(х(х+1)) = 0 х² + х - 90 = 0 D = 1 + 4*90 = 361 x₁ = (- 1 + 1 9)/2 = 9 x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи. 9 км/ ч - скорость 2-ого велосипедиста 1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста ответ: 10 км/ч; 9 км/ч.
8y - 3y - 5 = 6y - 3
5y - 5 = 6y - 3
5y - 6y = -3 + 5
-y = 2
y = 2
5y² - 2y = 0
y(5y - 2) = 0
y₁ = 0
5y - 2 = 0
5y = 2
y= 2/5
y₂ = 0.4
(a-b)² + 3a - 3b = (a-b)(a-b) + 3(a-b) = (a-b)(a-b+3)
Система:
{2(x+5) =9 - 3(4+y)
{21 +6x+ 4y = 4(2x+5)
{2х + 10 = 9 - 12 -3у
{ 21 + 6x +4y = 8x + 20
{2x + 3y = - 3 - 10
{6x + 4y - 8x = 20 - 21
{ 2x + 3y = -13
{-2x + 4y = - 1
метод сложения:
2х + 3у -2х + 4у = -13 - 1
7у = -14
у = -14/7
у = -2
2х + 3*(-2) = -13
2х -6 = -13
2х = -13 +6
2х=-7
х= - 7/2
х = -3,5
ответ: (-3,5; -2)
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.