Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со 2-го, равен предыдущему, сложенному с одним и тем же числом.
Это число называют разностью арифметической прогрессии и обозначают d.
Значит, а₂ = а₁ + d, a₃ = a₂ + d = а₁ + 2d, ..., an = a₁ + d(n - 1) - формула n-го члена.
Т.к. а₁ = 8, а₇ =26, то используя формулу n-го члена можно записать:
а₇ = а₁ + d(7 - 1), а₇ = а₁ + 6d, 26 = 8 + 6d, откуда 6d = 26 - 8 = 18, т.е. d = 3.
Сумму n первых членов арифметической прогрессии находят по формуле Sn = (a₁ + an)/2 · n или Sn = (2a₁ + d(n - 1))/2 · n.
S₁₀ = (2 · 8 + 3(10 - 1))/2 · 10 = (16 + 3 · 9)/2 · 10 = (16 + 27) · 5 = 43 · 5 = 215.
ответ: 215.
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение:
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со 2-го, равен предыдущему, сложенному с одним и тем же числом.
Это число называют разностью арифметической прогрессии и обозначают d.
Значит, а₂ = а₁ + d, a₃ = a₂ + d = а₁ + 2d, ..., an = a₁ + d(n - 1) - формула n-го члена.
Т.к. а₁ = 8, а₇ =26, то используя формулу n-го члена можно записать:
а₇ = а₁ + d(7 - 1), а₇ = а₁ + 6d, 26 = 8 + 6d, откуда 6d = 26 - 8 = 18, т.е. d = 3.
Сумму n первых членов арифметической прогрессии находят по формуле Sn = (a₁ + an)/2 · n или Sn = (2a₁ + d(n - 1))/2 · n.
S₁₀ = (2 · 8 + 3(10 - 1))/2 · 10 = (16 + 3 · 9)/2 · 10 = (16 + 27) · 5 = 43 · 5 = 215.
ответ: 215.
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение: