1. Прямоугольник - это параллелограмм, у которого все углы прямые.
2. Диагонали прямоугольника равны. Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD. Рассмотрим ΔBAD и ΔCDA. В них: 1. ∠BAD = ∠CDA = 90 2. AB = CD (как противолежащие стороны параллелограмма) 3. AD - общий катет Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
Для справки) Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q в общем все решается исходя из теоремы Виета) 1) сумма = 9 произведение = 20 2) составим уравнение исходя из (x-x1)(x+x2), где x1 и x2 - корни (x-8)(x+1)=x^2+x-8x-8=x^2-7x-8 3)по теореме Виета , произведение - свободный член, т.е 72 один корень 9, а второй 72/9=8 4)сумма = 12 ну и найдем, что корни то есть 12/4 = -3(1 корень) второй корень - 3*3=-9 (проверкой определяем знак перед корнем, тут минус) откуда c = произведению и равен 27)
2. Диагонали прямоугольника равны.
Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD.
Рассмотрим ΔBAD и ΔCDA. В них:
1. ∠BAD = ∠CDA = 90
2. AB = CD (как противолежащие стороны параллелограмма)
3. AD - общий катет
Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
в общем все решается исходя из теоремы Виета)
1) сумма = 9 произведение = 20
2) составим уравнение исходя из (x-x1)(x+x2), где x1 и x2 - корни
(x-8)(x+1)=x^2+x-8x-8=x^2-7x-8
3)по теореме Виета , произведение - свободный член, т.е 72 один корень 9, а второй 72/9=8
4)сумма = 12 ну и найдем, что корни то есть 12/4 = -3(1 корень) второй корень - 3*3=-9
(проверкой определяем знак перед корнем, тут минус) откуда c = произведению и равен 27)