Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
/ - дробь.
f(x) = sin(3x/2) + ctg(4x/3).
Поделим данную функцию на две части:
sin(3x/2) и ctg(4x/3). Определим период каждой части,
Для функции sin(3x/2) подходит формула a×sin(bx+c). Периодом здесь будет P = 2π/B = 2π / 3/2 = 4π/3.
Для функции ctg(4x/3) подходит формула a×cot(bx+c). Периодом здесь будет P = π/B = π/ 4/3 = 3π/4.
Чтобы найти период функции из этих двух частей необходимо найти НОК(наименьшее общее кратное).
P1 = 4π/3 = 2×2×π×⅓.
P2 = 3π/4 = 3×π×¼.
Здесь это будет число 12π и соответственно, период функции f(x) = sin(3x/2) + ctg(4x/3) равен 12π.