Прямая имеет направляющий вектор . Плоскость, перпендикулярная прямой , также перпендикулярна ее направляющему вектору. То есть вектор является нормальным для искомой плоскости. Уравнение плоскости, которая проходит через точку (x0,y0,z0) перпендикулярно вектору (A,B,C) имеет вид A(x−x0)+B(y−y0)+C(z−z0)=0. Уравнение плоскости, которая проходит через точку (x0,y0,z0) перпендикулярно вектору (A,B,C) имеет вид A(x−x0)+B(y−y0)+C(z−z0)=0. Запишем уравнение плоскости, проходящей через точку перпендикулярно вектору : ответ: