1)Общее ЭДС такого соединения 2)Общее сопротивление внешней цепи(трех резисторов) 3)Общее сопротивление внутренней цепи (батареек) 4)Общее напряжение на внешней цепи
При равноускоренном движении v=v0+a*t, s=v0*t+a*t*t/2, где а - ускорение. за время набора скорости от 17 км/ до 73 км/ч поезд двойную длину моста, т.е. 700 м. Получаем систему уравнение (скорость v0 переведена в м\с): 1) (17/3,6)*t+a*t*t/2=700 2) 17/3,6+a*t=73/3,6 Умножив оба уравнения на 18, получим: 1) 85*t+9*a*t*t=12600 2) 85+18*a*t=365 Из второго уравнения находим а=140/(9*t). Подставляя это выражение в первое уравнение, получим уравнение 85*t+140*t=12600, откуда время прохода всего поезда по мосту t=56c.Но пассажир находился на мосту лишь половину этого времени. т.е. 28с. ответ: 28с.
Объяснение:
№1
P = IU = I²R
P1/P2 = ( ( 2I )²( R/4 ) )/( I²R ) = ( I²R )/( I²R ) = 1
№2
η = Рпол./Рзат. * 100%
η = ( I2U2 )/( I1U1 ) 100%
I1 = ( I2U2 )/( ηU1 ) 100%
I1 = ( 9 * 22 )/( 90% * 220 ) 100% = 1 A
№3
λ = Тv
λ = 2π√( LCоб. )v
λ = 2π√( L( C1 + C2 ) )v
λ = 2 * 3,14 √( 10 * 10^-3 ( 360 * 10^-12 + 40 * 10^-12 ) ) 3 * 10^8 = 2 * 3,14 √( 10^-2 ( ( 36 + 4 ) 10^-11 ) 3 * 10^8 = 3768 м
№4
WC( max ) = ( CU( max )² )/2
WL( max ) = ( LI( max )² )/2
W = WC( max ) = WL( max )
( CU( max )² )/2 = ( LI( max )² )/2
CU( max )² = LI( max )²
С = ( LI( max )² )/( U( max )² )
W = WC + WL
W = ( CU² )/2 + ( LI² )/2
( CU( max )² )/2 = ( CU² )/2 + ( LI² )/2
CU( max )² = CU² + LI²
LI( max )² = ( LI( max )²U² )/U( max )² + LI²
LI( max )² = L ( I( max )²U² )/U( max )² + I² )
I( max )² = ( I( max )²U² )/U( max )² + I²
Подставим численные данные и решим уравнение
( 5 * 10^-3 )² = ( ( 5 * 10^-3 )²U²/2² ) + ( 3 * 10^-3 )²
2,5 * 10^-5 = 6,25 * 10^-6U² + 9 * 10^-6
( 25 - 9 ) 10^-6 = 6,25 * 10^-6U²
16 = 6,25U²
U = √( 16/6,25 ) = 1,6 B
за время набора скорости от 17 км/ до 73 км/ч поезд двойную длину моста, т.е. 700 м. Получаем систему уравнение (скорость v0 переведена в м\с):
1) (17/3,6)*t+a*t*t/2=700
2) 17/3,6+a*t=73/3,6
Умножив оба уравнения на 18, получим:
1) 85*t+9*a*t*t=12600
2) 85+18*a*t=365
Из второго уравнения находим а=140/(9*t). Подставляя это выражение в первое уравнение, получим уравнение 85*t+140*t=12600, откуда время прохода всего поезда по мосту t=56c.Но пассажир находился на мосту лишь половину этого времени. т.е. 28с.
ответ: 28с.