1 Сколько времени пройдёт на космическом объекте, который движется со скоростью 0,5с, если в неподвижной системе отсчёта год? 2 Длина тела, движущегося со скоростью 0,6с составляет 2м. Найти его длину в НСО?
Сначала нужно выяснить, каков радиус орбиты геостационарного спутника. Так как,
по определению, это спутник, все время находящийся над одной и той же точкой земной
поверхности, то спутник движется по круговой орбите в плоскости экватора Земли, а его
период обращения по орбите равен периоду вращения Земли, т.е. 1 суткам. Воспользовавшись
3-м законом Кеплера, сравним движение спутника и Луны вокруг Земли:
a$
r
3
= P
2
$,
где r — радиус орбиты спутника (в км), a$ — большая полуось орбиты Луны (в км), P$ —
период обращения Луны (в сутках). Отсюда получаем, что
a$
r
≈ (
√3
27)2 = 9.
Так как a$ ≈ 384 тыс. км, то r ≈ 43 тыс. км.
Известно, что на расстоянии орбиты Луны размер земной тени больше размеров Луны
(т.к. полные (теневые) лунные затмения довольно продолжительны), а радиус Луны примерно в 4 раза меньше радиуса Земли. Исходя из этого, для оценки размеров земной тени
на расстоянии, в 9 раз меньшем размеров лунной орбиты, мы можем приближенно считать
тень цилиндром, а не конусом, т.е. предполагать, что размер земной тени равен размеру
Земли — примерно 13 тыс. км. Так как ширина тени мала по сравнению с длиной орбиты,
для оценки можно считать путь спутника внутри тени отрезком прямой. Длина орбиты
спутника равна 2π · r ≈ 270 тыс. км. Это путь он проходит за 24 часа. Следовательно,
расстояние в 13 тыс. км спутник пройдет примерно за 1.2 часа
1)Согласно формуле гидростатического давления (давление жидкостей): P=ρ*g*h где ρ - плотность вещества (кг/м³), g - ускорение свободного падения (g = 9,8 м/с²). h - высота столба жидкости (м).
Вычислим: плотность воды p = 1000 кг/м³.
P=1000*9,8*50=490 КПа.
2)Силы которые давят на поршень пропорциональны площадям.
F1/F2=S1/S2 Сила воздействия на поршень равна весу гири. F1=P1=m1*g F2=P2=m2*g подставляем формулу веса m1*g/m2*g=S1/S2 m1/m2=S1/S2 находим вес второй гири m2=m1*S2/S1 m2=4кг * 200см2 / 20см2=40кг
Сначала нужно выяснить, каков радиус орбиты геостационарного спутника. Так как,
по определению, это спутник, все время находящийся над одной и той же точкой земной
поверхности, то спутник движется по круговой орбите в плоскости экватора Земли, а его
период обращения по орбите равен периоду вращения Земли, т.е. 1 суткам. Воспользовавшись
3-м законом Кеплера, сравним движение спутника и Луны вокруг Земли:
a$
r
3
= P
2
$,
где r — радиус орбиты спутника (в км), a$ — большая полуось орбиты Луны (в км), P$ —
период обращения Луны (в сутках). Отсюда получаем, что
a$
r
≈ (
√3
27)2 = 9.
Так как a$ ≈ 384 тыс. км, то r ≈ 43 тыс. км.
Известно, что на расстоянии орбиты Луны размер земной тени больше размеров Луны
(т.к. полные (теневые) лунные затмения довольно продолжительны), а радиус Луны примерно в 4 раза меньше радиуса Земли. Исходя из этого, для оценки размеров земной тени
на расстоянии, в 9 раз меньшем размеров лунной орбиты, мы можем приближенно считать
тень цилиндром, а не конусом, т.е. предполагать, что размер земной тени равен размеру
Земли — примерно 13 тыс. км. Так как ширина тени мала по сравнению с длиной орбиты,
для оценки можно считать путь спутника внутри тени отрезком прямой. Длина орбиты
спутника равна 2π · r ≈ 270 тыс. км. Это путь он проходит за 24 часа. Следовательно,
расстояние в 13 тыс. км спутник пройдет примерно за 1.2 часа
Вычислим: плотность воды p = 1000 кг/м³.
P=1000*9,8*50=490 КПа.
2)Силы которые давят на поршень пропорциональны площадям.F1/F2=S1/S2
Сила воздействия на поршень равна весу гири.
F1=P1=m1*g
F2=P2=m2*g
подставляем формулу веса
m1*g/m2*g=S1/S2
m1/m2=S1/S2
находим вес второй гири
m2=m1*S2/S1
m2=4кг * 200см2 / 20см2=40кг