10) Какое количество теплоты потребуется для преобразования в пар воды массой 2 кг, взятой при температуре кипения? А. 2,3 МДж Б. 2,3 кДж В. 4,6 кДж Г. 4,6 МДж
Лед, вода и водяной пар — три состояния одного и того же вещества-воды. Значит, молекулы льда, воды и водяного пара не отличаются друг от друга. Следовательно, эти три состояния различаются не молекулами, а тем, как молекулы расположены и как движутся. Как же расположены и как движутся молекулы газа, жидкости и твердого тела?
Газ можно сжать так, что его объем уменьшится в несколько раз. Значит, в газах расстояния между молекулами большие, много больше размеров самих молекул. В среднем расстояния между молекулами газов в десятки раз больше размера молекул. На таких расстояниях молекулы очень слабо притягиваются друг к другу, Поэтому-то газы не имеют собственной формы и постоянного объема. Нельзя наполнить газом, например, половину бутылки или стакана, так как, двигаясь во всех направлениях и почти не притягиваясь, друг к другу, молекулы быстро заполнят весь сосуд.
Свойства жидкостей объясняются тем, что промежутки между их молекулами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше самой молекулы. На таких расстояниях притяжение молекул друг к другу уже значительно. Поэтому молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях, сохраняет свой объем. Однако притяжение молекул жидкостей еще не настолько велико, чтобы жидкость сохраняла свою форму. Этим объясняется, что жидкости принимают форму сосуда и их легко разбрызгать и перелить в другой сосуд.
Сжимая жидкость, мы сближаем ее молекулы настолько, что они начинают отталкиваться. Вот почему жидкость так трудно сжать.
Твердые тела в обычных условиях сохраняют и объем, и форму. Это объясняется тем, что притяжение между их частицами еще больше, чем у жидкостей.
Некоторые из твердых тел, например снежинки, имеют естественную правильную и красивую форму. Частицы (молекулы или атомы) большинства твердых тел, таких, как лед, соль, нафталин, металлы, расположены в определенном порядке. Такие твердые тела называют кристаллическими. Хотя частицы этих тел и находятся в движении, но каждая из них движется около определенной точки, подобно маятнику часов, т. е. колеблется. Частица не может переместиться далеко от этой точки, поэтому твердое тело сохраняет свою форму.
На цветной вклейке I, в середине, показано расположение молекул одного и того же вещества — воды — в разных состояниях: а — твердом (лед), б—жидком (вода), в — газообразном (водяной пар). На вклейке II показано расположение частиц в кристалле золота.
Одним из основателей учения о молекулярном строении вещества был великий русский ученый М. В. Ломоносов. Вот как представлял себе М. В. Ломоносов строение газов: «Частицы газа сталкиваются с другими соседними в беспорядочной взаимности, отскакивают друг от друга и снова сталкиваются с другими, более близкими, снова отскакивают, так что стремятся рассыпаться во все стороны, постоянно отталкиваемые друг от друга такими очень частыми взаимными ударами».
На основе представлений о молекулах Ломоносов объяснял многие явления.
Термометр - прибор для измерения температуры воздуха, почвы, воды и т.д.
Принцип работы
Действие термометра основано на зависимости различных аддитивных физических величин от температуры. При измерении термометр приводится в тепловое равновесие с объектом, температура которого определяется. В каждом типе термометра непосредственно измеряется определенная физическая величина, связанная с температурой известной зависимостью. которая называется температурной шкалой. Бесконтактные высокотемпературные термометры, основанные на измерении параметров оптимального излучения, называются пирометрами.
Типология термометров
По принципу действия все приборы для измерения температуры можно разделить на следующие типы:
манометрические - изменение температуры фиксируется изменением давления;
жидкостные - основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды;
газовые - используют зависимость давления газа от температуры;
биметаллические (механические) - в качестве датчика обычно используется металлическая спираль или лента из биметалла;
электронные - принцип работы основан на изменении сопротивления проводника при изменении температуры окружающей среды;
оптические (пирометры) - позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров при изменении температуры;
инфракрасные - позволяет измерять температуру без непосредственного контакта с измеряемой средой.
По назначению разделяют следующие виды термометров:
технические предназначены для общего назначения, используются в различных промышленных областях;
коррозионностойкие - для эксплуатации в особо жестких условиях, имеют высокий класс пылевлагозащиты;
игольчатые применяются для измерения густых, сыпучих и вязких сред;
трубные используются для измерения температуры на поверхности труб;
судовые применяется в системах и аппаратах судов;
сельскохозяйственные используются в складских помещениях и инкубаторах;
самопишущие предназначены для измерения температуры и записи ее во времени на дисковой диаграмме, для использования в системах автоматического управления температурой;
сигнализирующие - для оповещения о достигнутых значениях температуры;
метеорологические предназначенных для метеорологических станций;
вибростойкие применяются в условиях высоких вибраций;
электроконтактные - для управления внешними электрическими цепями от сигнализирующих устройств приборов;
лабораторные применяются для высокоточных измерений в лабараторных условиях;
для нефтепродуктов применяются в нефтяной промышленности для контроля температуры и анализа качества нефтепродуктов.
Применение термометров
Термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах
Лед, вода и водяной пар — три состояния одного и того же вещества-воды. Значит, молекулы льда, воды и водяного пара не отличаются друг от друга. Следовательно, эти три состояния различаются не молекулами, а тем, как молекулы расположены и как движутся. Как же расположены и как движутся молекулы газа, жидкости и твердого тела?
Газ можно сжать так, что его объем уменьшится в несколько раз. Значит, в газах расстояния между молекулами большие, много больше размеров самих молекул. В среднем расстояния между молекулами газов в десятки раз больше размера молекул. На таких расстояниях молекулы очень слабо притягиваются друг к другу, Поэтому-то газы не имеют собственной формы и постоянного объема. Нельзя наполнить газом, например, половину бутылки или стакана, так как, двигаясь во всех направлениях и почти не притягиваясь, друг к другу, молекулы быстро заполнят весь сосуд.
Свойства жидкостей объясняются тем, что промежутки между их молекулами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше самой молекулы. На таких расстояниях притяжение молекул друг к другу уже значительно. Поэтому молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях, сохраняет свой объем. Однако притяжение молекул жидкостей еще не настолько велико, чтобы жидкость сохраняла свою форму. Этим объясняется, что жидкости принимают форму сосуда и их легко разбрызгать и перелить в другой сосуд.
Сжимая жидкость, мы сближаем ее молекулы настолько, что они начинают отталкиваться. Вот почему жидкость так трудно сжать.
Твердые тела в обычных условиях сохраняют и объем, и форму. Это объясняется тем, что притяжение между их частицами еще больше, чем у жидкостей.
Некоторые из твердых тел, например снежинки, имеют естественную правильную и красивую форму. Частицы (молекулы или атомы) большинства твердых тел, таких, как лед, соль, нафталин, металлы, расположены в определенном порядке. Такие твердые тела называют кристаллическими. Хотя частицы этих тел и находятся в движении, но каждая из них движется около определенной точки, подобно маятнику часов, т. е. колеблется. Частица не может переместиться далеко от этой точки, поэтому твердое тело сохраняет свою форму.
На цветной вклейке I, в середине, показано расположение молекул одного и того же вещества — воды — в разных состояниях: а — твердом (лед), б—жидком (вода), в — газообразном (водяной пар). На вклейке II показано расположение частиц в кристалле золота.
Одним из основателей учения о молекулярном строении вещества был великий русский ученый М. В. Ломоносов. Вот как представлял себе М. В. Ломоносов строение газов: «Частицы газа сталкиваются с другими соседними в беспорядочной взаимности, отскакивают друг от друга и снова сталкиваются с другими, более близкими, снова отскакивают, так что стремятся рассыпаться во все стороны, постоянно отталкиваемые друг от друга такими очень частыми взаимными ударами».
На основе представлений о молекулах Ломоносов объяснял многие явления.
Термометр - прибор для измерения температуры воздуха, почвы, воды и т.д.
Принцип работы
Действие термометра основано на зависимости различных аддитивных физических величин от температуры. При измерении термометр приводится в тепловое равновесие с объектом, температура которого определяется. В каждом типе термометра непосредственно измеряется определенная физическая величина, связанная с температурой известной зависимостью. которая называется температурной шкалой. Бесконтактные высокотемпературные термометры, основанные на измерении параметров оптимального излучения, называются пирометрами.
Типология термометров
По принципу действия все приборы для измерения температуры можно разделить на следующие типы:
манометрические - изменение температуры фиксируется изменением давления;
жидкостные - основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды;
газовые - используют зависимость давления газа от температуры;
биметаллические (механические) - в качестве датчика обычно используется металлическая спираль или лента из биметалла;
электронные - принцип работы основан на изменении сопротивления проводника при изменении температуры окружающей среды;
оптические (пирометры) - позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров при изменении температуры;
инфракрасные - позволяет измерять температуру без непосредственного контакта с измеряемой средой.
По назначению разделяют следующие виды термометров:
технические предназначены для общего назначения, используются в различных промышленных областях;
коррозионностойкие - для эксплуатации в особо жестких условиях, имеют высокий класс пылевлагозащиты;
игольчатые применяются для измерения густых, сыпучих и вязких сред;
трубные используются для измерения температуры на поверхности труб;
судовые применяется в системах и аппаратах судов;
сельскохозяйственные используются в складских помещениях и инкубаторах;
самопишущие предназначены для измерения температуры и записи ее во времени на дисковой диаграмме, для использования в системах автоматического управления температурой;
сигнализирующие - для оповещения о достигнутых значениях температуры;
метеорологические предназначенных для метеорологических станций;
вибростойкие применяются в условиях высоких вибраций;
электроконтактные - для управления внешними электрическими цепями от сигнализирующих устройств приборов;
лабораторные применяются для высокоточных измерений в лабараторных условиях;
для нефтепродуктов применяются в нефтяной промышленности для контроля температуры и анализа качества нефтепродуктов.
Применение термометров
Термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах