2. на рисунках показан камень, помещенный в мензурку с водой, масса камня указана на рисунке. mi 400 400 300 г 200 а) определите объем жидкости b) определите объем камня с) найдите плотность камня
Мощность P = 6 Вт, площадь пластины S = 10 см², коэффициент отражения R = 0.6
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине. - Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п - Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади: p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
Распишем уравнения движения каждого автомобиля: S1 = Vo * t1 + a1*(t1)^2 / 2 S2 = Vo * t2 + a2*(t2)^2 / 2 В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны: S1 = a*(t1)^2 / 2 S2 = a*(t2)^2 / 2 Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м: S2 - S1 = 70 м Занесем все в общую формулу: S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м) Вместо t2 подставим t1 + 10c: a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70 Немного математики: (a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель (a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70 (a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70 a*20*t1 +100*a = 140 Подставим значение а: 0,2*20*t1 + 100 * 0,2 = 140 4*t1 = 120 t1 = 30 c ответ: 30с
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа
S1 = Vo * t1 + a1*(t1)^2 / 2
S2 = Vo * t2 + a2*(t2)^2 / 2
В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны:
S1 = a*(t1)^2 / 2
S2 = a*(t2)^2 / 2
Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м:
S2 - S1 = 70 м
Занесем все в общую формулу:
S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м)
Вместо t2 подставим t1 + 10c:
a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70
Немного математики:
(a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель
(a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70
(a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70
a*20*t1 +100*a = 140
Подставим значение а:
0,2*20*t1 + 100 * 0,2 = 140
4*t1 = 120
t1 = 30 c
ответ: 30с