Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
Время падения тела на Землю с высоты h над её поверхностью без начальной скорости вычисляют по формуле t=sqrt(2*h/g), при этом h=(gt^2)/2, что после подстановки значений t=4 с, g=9,81 м/с^2 (приблизительно) даёт h=(9,81*4^2)/2=78,48 (м). Чтобы вычислить, за какое время тело упало бы на Землю, если его сбросить с высоты h=78,48 м с начальной скоростью v0=29,4 м/с, совместим начало O координат с поверхностью Земли и координатную ось Oy направим вверх. Запишем кинематическое уравнение движения тела в проекциях на ось Oy: y=h-v0*t-(g*t^2)/2. В момент t=t1 падения тела координата y1=0. Тогда 0=h-v0*t1-(g*(t1)^2)/2, откуда g*(t1)^2+2*v0*t1-2*h=0, t1=(-v0+sqrt((v0)^2+2*g*h))/g=(-29,4+sqrt((29,4)^2+2*9,81*78,48))/9,81=2,00 (с).
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.