5. определите отношение энергии к энергии электрического поля конденсатора идеального колеба- тельного контура в момент времени, когда мгновенное значение напряжения равно его действующему значению.
Угол падения луча на плоское зеркало 35 градусов. Каким будет угол между падающим и отраженным лучами, если угол падения увеличили на 25 градусов?
Отчёт градусов будем производить относительно нормали проведенной к плоскости на которую попадает луч
( для большей ясности см. рисунок )
В начале луч падает под углом 35° затем мы угол падения увеличиваем на 25° то есть угол падения составит 60° ( Т.к. 25° + 35° = 60° ) но мы знаем то что угол падения луча равен его углу отражения
Поэтому угол между падающим и отраженным лучами равен 120°
определите момент инерции системы, состоящей из 4 точечных масс расположенных по вершинам квадрата со стороной а, относительно оси, лежащей в плоскости квадрата и проходящей через одну из вершин квадрата, перпендикулярно диагонали, выходящей из этой вершины.
Объяснение:
Момент инерции — мера инертности во вращательном движении вокруг оси, равен сумме произведений элементарных масс на квадрат их расстояний до оси вращения.
Расстояние от A1 до оси R1 = a√2. от А2 и А4 - R2 = (a√2)/2, от А4 - R3=0
120 градусів
Объяснение:
Угол падения луча на плоское зеркало 35 градусов. Каким будет угол между падающим и отраженным лучами, если угол падения увеличили на 25 градусов?
Отчёт градусов будем производить относительно нормали проведенной к плоскости на которую попадает луч
( для большей ясности см. рисунок )
В начале луч падает под углом 35° затем мы угол падения увеличиваем на 25° то есть угол падения составит 60° ( Т.к. 25° + 35° = 60° ) но мы знаем то что угол падения луча равен его углу отражения
Поэтому угол между падающим и отраженным лучами равен 120°
( 60 ° + 60° = 120° )
определите момент инерции системы, состоящей из 4 точечных масс расположенных по вершинам квадрата со стороной а, относительно оси, лежащей в плоскости квадрата и проходящей через одну из вершин квадрата, перпендикулярно диагонали, выходящей из этой вершины.
Объяснение:
Момент инерции — мера инертности во вращательном движении вокруг оси, равен сумме произведений элементарных масс на квадрат их расстояний до оси вращения.
Расстояние от A1 до оси R1 = a√2. от А2 и А4 - R2 = (a√2)/2, от А4 - R3=0
J = ∑ m*R² = m*(a√2)² + 2m*[(a√2)/2]² = 2ma² + ma² = 3a²m
Можно посчитать по-другому определив момент вращения центра тяжести квадрата
J = 4m*(a/√2)² = 2a²m
Который ответ выбрать я не знаю, но, судя по определению, приведенному выше склоняюсь больше к первому ответу.