Из аэродинамики известна следующая формула для соотношения давлений и площадей: p/p0=ρ/ ρ0=e^(-z/H), где z- высота исследуемого слоя воздуха (в метрах; вверх от поверхности Земли) p – давление в исследуемой точке p0 – давление у поверхности Земли ρ и ρ0 – плотности в исследуемой точке и у поверхности e – основание натурального логарифма, равное 2,718 H – высота однородной атмосферы, т. е. , такая высота, которую имел бы слой воздуха, если бы он был несжимаем. Она равна 8425 м. Однако эта формула не дает взаимосвязи плотностей с температурой в явном виде. Для этого используется другая формула: ρ/ρ0=(1-(β• z /T0))^((T0•γ0/ β• p0)-1) здесь β – градиент температуры, град/м, т. е, величина, показывающая на сколько градусов изменяется температура при изменении высоты z на один метр; T0 – температура у пов-сти Земли γ0 – удельный вес воздуха, Н/м^3. Поскольку из условия задачи температура с высотой не меняется, то ее градиент β равен 0. Из второй формулы получим ρ/ρ0=(1-0)^∞ =1, т. е, плотность с высотой так же не меняется, а зависит только от давления. Тогда остается справедливым уравнение 1. Подставляя в нее значения, имеем p/p0 =2,718^(-(-1000)/8425)=1,126. Тогда давление на интересующей нас высоте p =1,126p0. Вот примерно так))) )
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
p/p0=ρ/ ρ0=e^(-z/H),
где z- высота исследуемого слоя воздуха (в метрах; вверх от поверхности Земли)
p – давление в исследуемой точке
p0 – давление у поверхности Земли
ρ и ρ0 – плотности в исследуемой точке и у поверхности
e – основание натурального логарифма, равное 2,718
H – высота однородной атмосферы, т. е. , такая высота, которую имел бы слой воздуха, если бы он был несжимаем. Она равна 8425 м.
Однако эта формула не дает взаимосвязи плотностей с температурой в явном виде. Для этого используется другая формула:
ρ/ρ0=(1-(β• z /T0))^((T0•γ0/ β• p0)-1)
здесь β – градиент температуры, град/м, т. е, величина, показывающая на сколько градусов изменяется температура при изменении высоты z на один метр;
T0 – температура у пов-сти Земли
γ0 – удельный вес воздуха, Н/м^3.
Поскольку из условия задачи температура с высотой не меняется, то ее градиент β равен 0. Из второй формулы получим
ρ/ρ0=(1-0)^∞ =1, т. е, плотность с высотой так же не меняется, а зависит только от давления. Тогда остается справедливым уравнение 1. Подставляя в нее значения, имеем
p/p0 =2,718^(-(-1000)/8425)=1,126.
Тогда давление на интересующей нас высоте
p =1,126p0.
Вот примерно так))) )
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?