7. Гиерон патшасының алтын тәжінің ауадағы салмағы 20 H, ал суда-
ғы салмағы 18,75 Hболсын. Тәж затының тығыздығы қандай? Алтынға тек күміс
қосылған деп болжап, тәждің құрамында қанша алтын, қанша күміс барын табыңдар.
Алтынның орташа тығыздығы 2 : 10 кг/м3, ал күмiстiкi 104 кг/м? деп есептендер.
8. 30 Н күш жұмсап, тасты су ішінде ұстап тұрған болсаңдар, тастың ауадағы массасы қандай болғаны? Тастың тығыздығы-2500 кг/м*3
Архимед заңы бойынша
Fa=pcgVc
Көмектесіңдерші
Известно, что потенциальная энергия тела (заряда) может изменяться за счет работы по перемещению тела, совершаемой консервативной силой, действующей со стороны полям:
dA dWp
.
В электростатическом поле на заряд q со стороны поля действует
сила Кулона
F qE
. Тогда работа dA, совершаемая электрическим полем
E
, равна работе силы Кулона при малом перемещении
dl
в пространстве заряда q (рис. 3)
dA (F dl ) q(E dl ) q(E dx E dy E dz)
x y z
.
Работа dA, совершаемая потенциальным полем, приводит к изменению потенциальной энергии dWp заряженного тела
dz
z
dy
y
dx
x
dA dWp qd q .
Из сопоставления этих выражений для работы dA видно, что связь
между напряженностью и потенциалом электростатического поля имеет
вид
x
Ex
,
y
Ey
,
z
Ez
или
E grad
.
Градиент (grad) скалярной
функции – это вектор, направленный в
сторону наиболее быстрого возрастания функции, равный по модулю производной от функции по этому
направлению. Следовательно, напряженность электрического поля
направлена в сторону наиболее
быстрого убывания потенциала.
Единицы измерения потенциала: В (вольт).
Из выражения
dA q(E dl )
следует, что работа по перемещению
заряда вдоль линии напряженности электрического поля
E dl
||
максимальна
dA q E dl . А работа по перемещению заряда перпендикулярно
напряженности электрического поля
E dl
минимальна
dA 0.
Интегрируя выражение
dA q(E dl ) qd
9
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
П 1.1. Тело, начальная скорость которого равна нулю, в течение вре-
мени t1=5 с двигалось равноускоренно с ускорением a=2 м/с
2
. Далее
путь S2=50 м тело двигалось равномерно. Определить среднюю ско-
рость тела.
Решение: Средняя скорость тела ср=S/t (S – путь, проходимый те-
лом за время t). Разделим S на два участка: S1 и S2 . На первом участ-
ке тело движется равноускоренно, а на втором – равномерно. Соот-
ветственно, t=t1+t2. Из уравнения равноускоренного движения
S1=at1
2
/2. На втором участке скорость тела 2=at1. Так как S2=2t2, то
t2=S2/(at1). Следовательно,
7,5 м/с. 2( )
( 2 )
/( )
/ 2 /
2
2
1
2 1
2
1
1 2 1
2
2
1
1 2
1 2
с р
at S
at S at
t S at
at S
t t
S S S t
П 1.2. С воздушного шара, поднимающегося вертикально вверх с по-
стоянной скоростью, для определения высоты шара сброшен гори-
зонтально груз, который через t1=5 c достиг Земли. Определить, на
какой высоте H находился шар в момент достижения грузом Земли.
Решение: Направим ось у вертикально вверх (рис. 1.1), а начало от-
счета выберем на поверхности Земли.
Пусть 0 – модуль вектора скорости шара,
h – высота, на которой сброшен груз.
Время отсчитываем с момента отделения
груза от шара. Тогда уравнение движения
шара имеет вид yш=h+0t, а груза yг=h+
0t-gt2
/2 (начальная скорость груза равна
скорости шара). По условию в момент
t=t1, yг(t1)=0, a yш(t1)=H – искомая величи-
на. Следовательно, ; 0 1 H h t
0 / 2 2
0 1 1 h t gt .
Решив систему уравнений находим, что H
= gt1
2
/2 = 122,6 м.
0
y
h
0
Рис. 1.1