7. В сосуд с водой опушены три одинаковые пробирки с жидкостью. Первая пробирка дажется вверх вторая плавает внутри сидвости, а треты движется вниз (Плотность роды на всей Губине считать одинаково 113
Поскольку внешних сил нет (мы пренебрегаем сопротивлением воды), то стало быть общий импульс системы этих трёх тел остаётся неизменным. Будем рассматирвать данную систему тел в модели из двух материальных точек m1 и m2, находящихся на концах тонкой спицы длины L и массой M, расположенной вдоль оси Ox, перпендикулярной g. Таким образом мы считаем, что все силы тяжести этих тел скомпенсированы силой реакции лодки, а так же и силой Архимеда, и далее вертикальные силы и импульсы нас интересовать не будут. Раскачивание лодки при перемещении рыбаков мы, также, в расчёт не принимаем.
Итак, как было сказано выше, импульс системы всегда равен нулю. Тоже верно и для проекции импульса по оси Ох:
pх = 0 ;
pх = MVx + m1 v1x + m2 v2x – в любой момент времени, где:
Vx = ΔХ/Δt – проекция (знаковая) скорости лодки на ось Ох, имеющей координату Х в любой момент времени ;
v1x = Δx1/Δt – проекция (знаковая) скорости перого рыбака массы m1 на ось Ох, имеющего координату x1 в любой момент времени ;
v2x = Δx2/Δt – проекция (знаковая) скорости второго рыбака массы m2 на ось Ох, имеющего координату x2 в любой момент времени ;
Δt > 0 – везде в вышеприведённых рассуждениях любой общий небольшой промежуток времени ;
pх = M (ΔХ/Δt) + m1 (Δx1/Δt) + m2 (Δx2/Δt) = 0 ; умножим всё на Δt и получим:
M ΔХ + m1 Δx1 + m2 Δx2 = 0 ; за любой небольшой промежуток времени, а значит и вообще за любой промежуток времени.
Далее за ΔХ, Δx1 и Δx2 – будем принимать смещения рыбаков относительно воды/земли за всё время «рокировки» рыбаков.
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а первый рыбак сместится на +L относительно лодки, а значит: отностельно воды/земли первый рыбак сместиться на величину:
ΔХ + L = Δx1 ;
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а второй рыбак сместится на –L относительно лодки, а значит: отностельно воды/земли второй рыбак сместиться на величину:
ΔХ – L = Δx2 ;
Подcтавим два предыдущих выражения для Δx1 и Δx2 в предыдущее уравнение и получим:
M ΔХ + m1 ( ΔХ + L ) + m2 ( ΔХ – L ) = 0 ;
M ΔХ + m1 ΔХ + m1 L + m2 ΔХ – m2 L = 0 ;
( M + m1 + m2 ) ΔХ = L ( m2 – m1 ) ;
откуда:
ΔХ = L (m2–m1)/(M+m1+m2) .
В частности, если рыбаки имеют одинаковую массу, то лодка не переместиться.
В частности, если первый левый рыбак имеет большую массу, то лодка переместиться налево.
А если первый левый рыбак имеет меньшую массу, то лодка переместиться направо.
3) Мышбяк (V группа) является донором в германии (IV группа) . Получится полупроводник n-типа. Естественно всё это верно, если полупроводник собственный
2))p-n-переход, или электронно-дырочный переход — область соприкосновения двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрические процессы в p-n-переходах являются основой работы полупроводниковых диодов, транзисторов и других электронных полупроводниковых приборов с нелинейной вольт-амперной характеристикой.
Главное свойство p-n-перехода пропускать ток в одном направлении и не пропускать его в противоположном направлении
Поскольку внешних сил нет (мы пренебрегаем сопротивлением воды), то стало быть общий импульс системы этих трёх тел остаётся неизменным. Будем рассматирвать данную систему тел в модели из двух материальных точек m1 и m2, находящихся на концах тонкой спицы длины L и массой M, расположенной вдоль оси Ox, перпендикулярной g. Таким образом мы считаем, что все силы тяжести этих тел скомпенсированы силой реакции лодки, а так же и силой Архимеда, и далее вертикальные силы и импульсы нас интересовать не будут. Раскачивание лодки при перемещении рыбаков мы, также, в расчёт не принимаем.
Итак, как было сказано выше, импульс системы всегда равен нулю. Тоже верно и для проекции импульса по оси Ох:
pх = 0 ;
pх = MVx + m1 v1x + m2 v2x – в любой момент времени, где:
Vx = ΔХ/Δt – проекция (знаковая) скорости лодки на ось Ох, имеющей координату Х в любой момент времени ;
v1x = Δx1/Δt – проекция (знаковая) скорости перого рыбака массы m1 на ось Ох, имеющего координату x1 в любой момент времени ;
v2x = Δx2/Δt – проекция (знаковая) скорости второго рыбака массы m2 на ось Ох, имеющего координату x2 в любой момент времени ;
Δt > 0 – везде в вышеприведённых рассуждениях любой общий небольшой промежуток времени ;
pх = M (ΔХ/Δt) + m1 (Δx1/Δt) + m2 (Δx2/Δt) = 0 ; умножим всё на Δt и получим:
M ΔХ + m1 Δx1 + m2 Δx2 = 0 ; за любой небольшой промежуток времени, а значит и вообще за любой промежуток времени.
Далее за ΔХ, Δx1 и Δx2 – будем принимать смещения рыбаков относительно воды/земли за всё время «рокировки» рыбаков.
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а первый рыбак сместится на +L относительно лодки, а значит: отностельно воды/земли первый рыбак сместиться на величину:
ΔХ + L = Δx1 ;
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а второй рыбак сместится на –L относительно лодки, а значит: отностельно воды/земли второй рыбак сместиться на величину:
ΔХ – L = Δx2 ;
Подcтавим два предыдущих выражения для Δx1 и Δx2 в предыдущее уравнение и получим:
M ΔХ + m1 ( ΔХ + L ) + m2 ( ΔХ – L ) = 0 ;
M ΔХ + m1 ΔХ + m1 L + m2 ΔХ – m2 L = 0 ;
( M + m1 + m2 ) ΔХ = L ( m2 – m1 ) ;
откуда:
ΔХ = L (m2–m1)/(M+m1+m2) .
В частности, если рыбаки имеют одинаковую массу, то лодка не переместиться.
В частности, если первый левый рыбак имеет большую массу, то лодка переместиться налево.
А если первый левый рыбак имеет меньшую массу, то лодка переместиться направо.
Объяснение:
1)Вот рисунок это 1
3) Мышбяк (V группа) является донором в германии (IV группа) . Получится полупроводник n-типа. Естественно всё это верно, если полупроводник собственный
2))p-n-переход, или электронно-дырочный переход — область соприкосновения двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрические процессы в p-n-переходах являются основой работы полупроводниковых диодов, транзисторов и других электронных полупроводниковых приборов с нелинейной вольт-амперной характеристикой.
Главное свойство p-n-перехода пропускать ток в одном направлении и не пропускать его в противоположном направлении
Подробнее - на -