Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$