Альфа-частица, влетевшая в камеру Вильсона со скоростью 11 Мм/с, оставила прямолинейный трек длиной 2,5 см. Найти модуль ускорения и время движения частицы.
(ответы представить в стандартном виде m⋅10n, где 1≤m<10, n∈Z. Число m округлить до десятых.)
Ускорение a=
⋅10
м/с.
Время t=
⋅10
с.
ДАЮ
Дано:
s = 16 см² = 16*10^(-4) = м²
h1 = 364 мм = 0,364 м
ρ = 800 кг/м3
g = 9,8 H/кг
F - ?
Пробка, получается, находится внизу, сбоку (в стенке сосуда). На пробку керосин давит снизу, сбоку и сверху. Надо выразить среднее давление на неё, а потом уже и силу. Среднее гидростатическое давление получается из среднего арифметического давления верхней границы и давления нижней. Получается, что сверху на пробку давление равно:
р1 = ρgh1
А снизу оно равно:
р2 = ρgh2
Высота h2 складывается из высоты h1 и высоты пробки h'. Найдём её из площади сечения пробки. Возьмём квадратную форму сечения вместо круглой - так удобнее считать, к тому же сторона квадрата будет не слишком сильно отличаться от диаметра круга при условии, что они одной и той же площади.
s(квадрата) = h'² =>
=> h' = √s
Выходит, что:
p2 = ρgh2 = ρg(h1 + h')
Тогда среднее давление на пробку:
р(ср.) = (р1 + р2)/2 = (ρgh1 + ρgh2)/2 = ρg(h1 + h2)/2 = ρg(h1 + h1 + h')/2 = ρg(2h1 + √s)/2
Теперь выражаем силу давления из формулы давления и находим значение:
p = F/s => F = p*s = ρg(2h1 + √s)/2 * s = ρgs(2h1 + √s)/2 = (800*9,8*16*10^(-4)*(2*0,364 + √(16*10^(-4/2 = (800*9,8*16*10^(-4)*(0,728 + 4*10^(-2)))/2 = (800*9,8*0,0016*(0,728 + 0,04))/2 = (800*9,8*0,0016*0,768)/2 = 400*9,8*0,0016*0,768 = 4,816... = 4,8 H
ответ: 4,8 Н.
Длина наклонной плоскости l связана с её высотой h соотношением l=h/sin(a), линейная скорость v связана с угловой скоростью w соотношением v=wR, где R - радиус диска.
Тогда mglsin(a)=v^2/2*(m+J/R^2). Так как движение тела происходит лишь под действием силы тяжести, то оно равноускоренное. Тогда v=at и l=at^2/2. Отсюда ускорение a=mgsin(a)/(m+J/R^2). Момент инерции диска J=mR^2/2. Тогда ускорение a=mgsin(a)/(3m/2)=2gsin(a)/3