В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
frikadel1
frikadel1
26.05.2021 12:27 •  Физика

Аллюминеевой заготовке массой 1 кг сообщили такое же количество теплоты, какое идет на нагревание воды массой 440 грамм от температуры 0 град. до температуры 100 град. как изменится при этом температура заготовки? напишите с дано , очень

Показать ответ
Ответ:
Саша039
Саша039
09.10.2020 12:54

Спросите кого угодно, что произойдет с температурой идеального газа, который расширяется в замкнутом сосуде без теплообмена с окружающей средой, и почти все вам ответят, что газ охладится. Не «верьте! Это не всегда так.

Вообразим такой мысленный эксперимент. Пусть одна половина теплоизолированного сосуда занята идеальным газом с давлением p1 и температурой T1, а другая — пуста (рис. 1). В некоторый момент уберем перегородку между половинами сосуда. Газ, естественно, будет расширяться, причем в пустоту, и после многочисленных столкновений его молекул со стенками и между собой установится новое равновесное состояние. Ясно, что теперь объем газа вдвое больше: V2 = 2V1. А каковы его давление p2 и температура T2?

Рис. 1

С одной стороны, так как процесс адиабатический, точки, соответствующие начальному и конечному состояниям газа, должны лежать на адиабате 1—2’ (рис. 2). Адиабата, как известно, падает круче изотермы, поэтому температура газа должна уменьшаться: T’2 < T1.

Рис. 2

С другой стороны, посмотрим, что говорит первый закон термодинамики. Количество теплоты Q, подведенное к газу, идет на увеличение его внутренней энергии ΔU и на работу по расширению А:

Q=ΔU+A .

В нашем случае Q = 0 (по условию адиабатичности). А какая работа совершается газом? Да никакой, потому, что он расширяется в вакуум, со стороны которого не встречает противодействия. Значит, и сила, и работа равны нулю: А = 0. Следовательно, и изменение внутренней энергии тоже равно нулю: ΔU = 0. Но поскольку в случае идеального газа внутренняя энергия зависит только от температуры, температура не изменится: T2 = T1, и давление станет равным p2=p12. Это означает, что точки, соответствующие начальному и конечному состояниям, будут лежать на изотерме 1-2.

А что происходит между этими состояниями? К сожалению, школьная термодинамика ничего об этом сказать не может. Почему? Да потому, что вся она верна только для очень медленных (так называемых квазистатических) процессов, которые происходят со скоростями, много меньшими тепловой скорости движения молекул. В нашем же случае как только мы уберем перегородку, газ буквально бросится в вакуум со скоростью порядка тепловой скорости молекул и даже еще быстрее, потому что в газе есть отдельные молекулы, скорость которых намного больше тепловой. А тут термодинамика просто неверна. Вот почему на рисунке 2 мы изобразили неизвестный нам процесс штрихами, а не сплошной линией.

Все наши рассуждения справедливы для случая идеального газа. А если газ не идеальный? Тогда его молекулы взаимодействуют друг с другом, и внутренняя энергия газа складывается из кинетической энергии движения молекул и потенциальной энергии их взаимодействия.

На рисунке 3 изображена зависимость потенциальной энергии П взаимодействия двух молекул от расстояния r между ними. Там, где потенциальная энергия минимальна (точка r0), вещество конденсируется, т. е. переходит в жидкое состояние.

Рис. 3

Так как, по условию, мы имеем в начальный момент газ, то среднее расстояние между молекулами соответствует точке r1 >> r0. После удвоения объема среднее расстояние между молекулами станет равным r2=r12–√3>r1. Получилось, как будто в результате расширения газ слегка «вытащили» наверх, по склону потенциальной ямы. Но кто поработал над тем, чтобы увеличить потенциальную энергию на ΔП? Никто. И сам газ тоже ни над кем не работал. Поэтому остается признать, что увеличение потенциальной энергии произошло за счет уменьшения кинетической энергии движущихся молекул. Значит, и температура — мера средней кинетической энергии молекул газа — в результате расширения слегка упадет. Но это верно только в случае реального газа.

0,0(0 оценок)
Ответ:
djhvh235
djhvh235
07.03.2023 07:14

Определение 1 1-го закона термодинамики Первый закон термодинамики представляет собой некое обобщение закона сохранения и превращения энергии для термодинамической системы, и формулируется следующим образом: Δ U = Q − A ∆U=Q-A. Определение 1 Изменение  Δ U ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты  Q Q, переданной системе, и работой  A A, совершенной системой над внешними телами. Формула первого закона термодинамики, зачастую записывается в ином виде:  Q = Δ U + A Q=∆U+A. Определение 2 Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами. Первый закон термодинамики представляет из себя, по сути, обобщение опытных фактов. Если руководствоваться им, то можно заявить, что энергия не возникает и не исчезает бесследно, а передается от одной системы к другой, меняя свои формы. Невозможность создания вечного двигателя (perpetuum mobile) первого рода, то есть машины, которая может совершать полезную работу, не потребляя энергию извне и не претерпевая каких-либо изменений во внутренней конструкции агрегата, являлась важным следствием первого закона термодинамики. В подтверждение этого выступает тот факт, что каждая из огромного множества попыток создания такого устройства неизменно заканчивалась неудачей. Реальная машина может совершать положительную работу  A A над внешними объектами, только получая некоторое количество теплоты  Q Q от окружающих тел или уменьшая  Δ U ΔU своей внутренней энергии. Первый закон термодинамики в процессах газов Первый закон термодинамики может применяться к изопроцессам в газах. Определение 3 В изохорном процессе, то есть в условиях неизменного объема  ( V = c o n s t ) (V=const), газ не совершает работы,  A = 0 A=0. В этом случае справедливой будет формула внутренней энергии газа: Q = Δ U = U ( T 2 ) − U ( T 1 ) Q=∆U=U(T2)-U(T1). В данном выражении  U ( T 1 ) U(T1) и  U ( T 2 ) U(T2) представляют внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит лишь от температуры, что исходит из закона Джоуля. При изохорном нагревании газ поглощает тепло ( Q > 0 ) (Q>0), чем провоцирует увеличение его внутренней энергии. В условиях охлаждения тепло отдается внешним объектам ( Q < 0 ) (Q<0). Определение 4 В изобарном процессе, предполагающем постоянность значения давления ( p = c o n s t ) (p=const), работа, совершаемая газом, выражается в виде соотношения: A = p ( V 2 − V 1 ) = p Δ V A=p(V2-V1)=p∆V. Первый закон термодинамики для изобарного процесса дает:  Q = U ( T 2 ) − U ( T 1 ) + p ( V 2 − V 1 ) = Δ U + p Δ V Q=U(T2)-U(T1)+p(V2-V1)=∆U+p∆V. При изобарном расширении  Q > 0 Q>0 тепло поглощается газом, и он совершает положительную работу. При изобарном сжатии  Q < 0 Q<0 тепло переходит внешним телам. В таком случае  A < 0 A<0. При изобарном сжатии уменьшаются температура газа  T 2 < T 1 T2

Объяснение:

Читаем учебник физики:  

"Внутреннюю энергию тела можно изменить двумя : совершая механическую работу или сообщив ему некоторое количество теплоты"  

ΔU = A' + Q  

Но нас чаще всего интересует не работа, совершенная над телом A', а работа, которую совершает само тело  A.  

По закону сохранения энергии:  

A' = - A  

Тогда:  

ΔU = - A + Q  

или:  

Q = ΔU + A -  первое начало термодинамики!

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота