Амплитуда колебаний груза на пружине равна 25 см. Когда груз находится на расстоянии 15 см от положения равновесия, скорость его движения равна 0,8 м/с. Максимальная скорость движения груза при колебаниях составляет:
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
t ≈ -5.36°C
Объяснение:
С = 1,5 кДж/°С = 1500 Дж/°С
t₁ = 20°С
m₁ = 100 г = 0,1 кг
t₂ = -30°С
λ₁ = 3.4⋅10⁵ Дж/кг
с₁ = 2100 Дж/(кг·°С)
с₂ = 4200 Дж/(кг·°С)
t - ? - температура установившегося теплового равновесия
Энергия, затраченная на нагревание льда до температуры плавления
Q₁ = c₁ · m₁ · (0 - t₂) = 2100 · 0.1 · 30 = 6 300 (Дж)
Энергия, затраченная на таяние льда
Q₂ = λ₁ · m₁ = 340 000 · 0.1 = 34 000 (Дж)
Энергия, затраченная на нагревание воды, получившейся изо льда
Q₃ = c₂ · m₁ · (t - 0) =4200 · 0.1 · t = 420t₃
Энергия, отданная сосудом с водой при охлаждении
Q₄ = C · (t₁ - t₃) = 1500 · (20 - t) = 30 000 - 1500 t
Уравнение теплового баланса
Q₁ + Q₂ + Q₃ = Q₄
6 300 + 34 000 + 420 t = 30 000 - 1500 t
1920 t = -10 300
t ≈ -5.36°C