Соединенное Королевство объявило о добровольной инициативе по поэтапному отказу от ламп накаливания на всей территории страны. Предполагалось, что уже в январе 2010 года 150 ваттные лампы будут под запретом. Британские чиновники решили, что такой отказ слишком поспешным и запрет перенесли на 2011 год. Британские чиновники полагают, что замена ламп накаливания на лампы дневного света позволит снизить выбросы Великобритании двуокиси углерода на 5,5 млн. тонн в год.«Избавиться от поглощающей энергию лампочки и потребителям снизить углеродный след и сделать Великобританию первопроходцем на этом пути», призвал министр окружающей среды Хилари Бенн. Министр очевидно забыл, что Австралия еще семь месяцев назад выступила с обязательной программой. Согласно которой полный отказ от ламп накаливания в стране произойдет в 2010 году.После таких заявлений, большинство торговцев Британии добровольно отказались от продажи не эффективных ламп.
Парообразованием называется процесс перехода жидкости в газ (пар). Процесс обратный парообразованию называется конденсацией. Парообразование может происходить как испарение с поверхности жидкости или в виде кипения.До сих пор речь шла о процессе парообразования, когда исходным агрегатным состоянием вещества была жидкость. Но, существует ещё один интересный вид парообразования, когда твердое тело, минуя жидкое состояние, превращается в газ. Такой вид парообразования называется возгонкой. Такой особенностью обладают, например, кристаллы йода, нафталина, обычного и "сухого" льда. Обратный процесс превращения газа непосредственно в твердое вещество называетсясублимацией.ИСПАРЕНИЕ- это парообразование с поверхности жидкости. При этом жидкость покидают более быстрые молекулы, обладающие большей скоростью. При любой температуре в жидкости находятся такие молекулы, которые обладают достаточной кинетической энергией, чтобы преодолеть силы сцепления между молекулами и совершить работу выхода из жидкости.
Скорость испарения жидкости зависит от: 1) от рода вещества; 2) от площади поверхности испарения; 3) от температуры жидкости; 4) от скорости удаления паров с поверхности жидкости, т.е. от наличия ветра.
Испарение происходит при любой температуре. С повышением температуры скорость испарения жидкости возрастает, так как возрастает средняя кинетическая энергия ее молекул, а следовательно, возрастает и число таких молекул, у которых кинетическая энергия достаточна для испарения. Скорость испарения возрастает и при ветре, который удаляет с поверхности жидкости ее пар и тем самым препятствует возвращению молекул в жидкость.
При испарении температура жидкости понижается, т.к. внутренняя энергия жидкости уменьшается из-за потери быстрых молекул. Но, если подводить к жидкости тепло, то ее температура может не изменятся
Процесс обратный парообразованию называется конденсацией.
Парообразование может происходить как испарение с поверхности жидкости или в виде кипения.До сих пор речь шла о процессе парообразования, когда исходным агрегатным состоянием вещества была жидкость. Но, существует ещё один интересный вид парообразования, когда твердое тело, минуя жидкое состояние, превращается в газ.
Такой вид парообразования называется возгонкой.
Такой особенностью обладают, например, кристаллы йода, нафталина, обычного и "сухого" льда.
Обратный процесс превращения газа непосредственно в твердое вещество называетсясублимацией.ИСПАРЕНИЕ- это парообразование с поверхности жидкости.
При этом жидкость покидают более быстрые молекулы, обладающие большей скоростью.
При любой температуре в жидкости находятся такие молекулы, которые обладают достаточной кинетической энергией, чтобы преодолеть силы сцепления между молекулами и совершить работу выхода из жидкости.
Скорость испарения жидкости зависит от:
1) от рода вещества;
2) от площади поверхности испарения;
3) от температуры жидкости;
4) от скорости удаления паров с поверхности жидкости, т.е. от наличия ветра.
Испарение происходит при любой температуре.
С повышением температуры скорость испарения жидкости возрастает, так как возрастает средняя кинетическая энергия ее молекул, а следовательно, возрастает и число таких молекул, у которых кинетическая энергия достаточна для испарения.
Скорость испарения возрастает и при ветре, который удаляет с поверхности жидкости ее пар и тем самым препятствует возвращению молекул в жидкость.
При испарении температура жидкости понижается, т.к. внутренняя энергия жидкости уменьшается
из-за потери быстрых молекул.
Но, если подводить к жидкости тепло, то ее температура может не изменятся