Чему равна сила тока, проходящая через реостат, изготовленный из золотой проволоки длиной 53 м и площадью поперечного сечения 3,1 мм², если напряжение на зажимах реостата — 87 В? Сила тока равна ? А. ответ (в том числе и промежуточный) округли до сотых в случае, если результат вычисления имеет большое количество цифр после запятой!
3. Медленно отодвигайте экран от линзы (положение 2, 3 и т. д.) на расстояние примерно в 50 см и по диаметру светлого пятна на экране наблюдайте, что происходит со световым пучком после преломления в линзе. Каким (сходящимся или расходящимся) является через линзу пучок?
Параллельные пучки света после преломления в линзе собираются в фокусе в один пучок. Пучок является сходящимся.
4. Нарисуйте примерный ход лучей светового пучка после выхода его из линзы. Что вы видите в самом узком месте пучка?
Объяснение:
ответ:1. Движение тела, брошенного под углом к горизонту, состоит из двух независимых движений: равномерного со скоростью vx = v0 cos α по горизонтали и равноускоренного со скоростью vy = v0 sin α – gt по вертикали.
2. Время движения по горизонтали в 2 раза большее за время подъема тела на максимальную высоту.
3. В самой высокой точке траектории движение тела (вершина параболы) вертикальная составляющая скорости равна нулю.
4. Максимальная дальность полета, без учета сопротивления движения, при данной начальной скорости достигается при угле бросания α = 45º.
v = v0+gt.
OX: vx = v0x, или vx = v0 cos α.
OY: vy = v0y+gyt.
Так как v0y = v0 sin α, gy = -g, тогда
vy = v0 sin α – gt,
x0 = 0, y0 = 0.
x = v0 cos α t,
y = v0 sin α t – gt2/2.
Максимальное значение x = OC есть дальность полета L тела.
Значит, L = v0 cos α t.
Найдем α, при которой L максимальна.
При этом y = 0.
Тогда 0 = v0 sin α t – gt2/2, или t = 2v0 sin α /g.
L = 2v02 cos α sin α / g.
Известно, что 2 cos α sin α = sin 2α, тогда L = v02 sin 2α/g.
Объяснение: