В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
uychuuus
uychuuus
10.10.2021 10:55 •  Физика

Чи є період Т і обертова частота n величинами
оберненими ? Довести формульно їх
оберненість.

Показать ответ
Ответ:
superfifer
superfifer
18.05.2020 23:32

Объяснение:

Дано:

m = 250 г = 0,250 кг

t₁ = 100⁰C

t₂ = 20⁰C

r = 2,26·10⁶ Дж/кг - удельная теплота конденсации

c = 4200 Дж/(кг·°С) - удельная теплоемкость воды

Q - ?

1)

Пар конденсируется, отдавая количество теплоты:

Q₁ = r·m = 2,26·10⁶·0,250 = 565 000 Дж

2)

Горячая вода, получившаяся при конденсации пара, отдает холодной воде:

Q₂ = c·m·(t₁ - t₂) = 4200·0,250·(100-20) = 84 000 Дж

3)

Общее количество теплоты:

Q = Q₁ + Q₂ = 565 000 + 84 000 = 649 000 Дж или

Q ≈ 650 кДж

Задача 2

Дано:

m₁ = 50 г = 0,050 кг

t₁ = 100⁰C

t₂ = 0⁰C

r = 2,26·10⁶ Дж/кг - удельная теплота конденсации

c = 4200 Дж/(кг·°С) - удельная теплоемкость воды

m₂ = 59 г = 0,059 кг

λ = 3,3·10⁵ Дж/кг - удельная теплота кристаллизации воды

Q - ?

1)

Пар конденсируется, отдавая количество теплоты:

Q₁ = r·m = 2,26·10⁶·0,050 = 113 000 Дж

2)

Получаем лед:

Q₂ = λ·m₂ = 3,3·10⁵·0,059 ≈ 19 500 Дж

Значит, должны отнять:

Q = 113 000 - 19 500 ≈ 93 500 Дж

0,0(0 оценок)
Ответ:
ARINA5656134
ARINA5656134
24.09.2022 05:28
1. Структура электростатического поля
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е. \overline E = E(r) \overline r_0
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).

2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля E(r) = k\frac{Q}{r^2}.

Потенциал электростатического поля связан с его напряженностью уравнением:
\phi_1-\phi_2 = \int\limits^{2}_{1} {E} \, dl
Интегрирование ведётся по произвольному пути между точками 1 и 2.

Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.

В нашем случае удобно интегрировать вдоль радиальных линий
\phi_1-\phi_2 = \int\limits^{r_2}_{r_1} {E} \, dr

Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю \phi_\infty = 0

\phi_1-\phi_\infty = \phi_1 = \int\limits^{\infty}_{r_1} {E} \, dr

Подставим в эту формулу найденное поле:
\phi = \int\limits^{\infty}_{R} {k \frac{Q}{r^2} } \, dr = kQ\int\limits^{\infty}_{R} { \frac{1}{r^2} } \, dr = kQ ( \lim_{r \to \infty} (- \frac{1}{r}) - (- \frac{1}{R} )) = \frac{kQ}{R}
Получили известный результат. Выразим из этого результата заряд Q.
Q= \frac{\phi R}{k}

3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
\int {\int {E} } \, dS = 4\pi kq
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.

Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
\int {\int {E(r)} } \, dS = E(r)\int {\int {} } \, dS =E(r)*4\pi r^2 = 4\pi kq
E(r) = k \frac{q}{r^2}

Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
E(r) = k \frac{Q}{r^2}
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
E(r) = k \frac{4Q}{r^2}
4Q - суммарный заряд внутри сферы радиусом r.

Аналогично рассчитаем потенциал.
\phi' = \int\limits^\infty_R {E(r)} \, dr = \int\limits^\infty_{4R} {k \frac{4Q}{r^2} } \, dr + \int\limits^{4R}_{3R} {0} } \, dr +\int\limits^{3R}_{R} {k \frac{Q}{r^2} } \, dr = k \frac{4Q}{4R} + k \frac{Q}{R} - k\frac{Q}{3R}

\phi' = k \frac{5Q}{3R}
Подставляем в это выражение найденное ранее Q и имеем:
\phi' = \frac{5}{3}\phi = 500

Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q.  Складываем результаты.

2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.

3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота