В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
564444
564444
08.07.2022 05:24 •  Физика

Что означают записи: плотность керосина равна 800 кг/м3,
стекла
2,5 г/см3,
ртути
13,5 кг/л

Показать ответ
Ответ:
polykoly
polykoly
02.08.2021 01:25
По определению: N = Q / t, где

N - мощность горелки,

t - искомое время,

Q - затраченное количество теплоты.

Разберемся поэтапно с Q.

На что наша горелка будет затрачивать энергию?

- плавление льда: λ m(л)

- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)

- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)

Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).

Запишем найденную формулу Q в формулу мощности:

N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,

откуда искомое время t:

t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.

Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):

t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,

t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,

t = (117250 + 378000) / 1,5*10^3,

t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин
0,0(0 оценок)
Ответ:
mansurislamov
mansurislamov
19.04.2022 19:10
Запишем второй закон Ньютона для горизонтального участка:

F – Fсопр – Fтр = 0 ,      если движение равномерно, где F – сила тяги конькобежца.

F = СSρu²/2 + μmg ,      где ρ – плотность воздуха, u, S и С – предельная скорость, площадь сечения и характерный коэффициент сопротивления конькобежца.

Запишем второй закон Ньютона для смычки:

v' = ( F – Fсопр – Fтр – mgsinφ ) / m    ,       где φ – текущий угол поворота на смычке; в данном случае Fтр = μN > μmg ! поскольку давление на смычке может быть заметно выше!

Нормальное ускорение в данном случае:

a = v²/R ,     которое обеспечивается реакцией смычки N за вычетом поперечной к смычке составляющей силы тяжести :

mv²/R = N – mgcosφ ,     где φ – текущий угол поворота на смычке.

N = mv²/R + mgcosφ ;

Fтр = μN = μmv²/R + μmgcosφ ;

v' = ( F – СSρv²/2 – μmv²/R – μmgcosφ – mgsinφ ) / m   ;

s'' = F/m – ( СSρ/[2m] + μ/R )s'² – μgcos(s/R) – gsin(s/R) ;

Данное нелинейное дифференциальное уравнение в элементарных функциях не решается. Для решения можно сделать некоторые пренебрежения.

Положим некоторые не значительно-переменные на смычке величины – постоянными:

μgcos(s/R) ≈ μgcos(φo/2),

gsin(s/R) ≈ gsin(φo/2),     где φo – угол наклона наклонной плоскости, тогда:

v' = [ F/m – μgcos(φo/2) – gsin(φ/o) ] – ( СSρ/[2m] + μ/R )v² ;

Поскольку мы будем устремлять R к нолю, то:

| F/m – μgcos(φo/2) – gsin(φ/o) | << ( СSρ/[2m] + μ/R )v² ,       а кроме того:

СSρ/[2m] << μ/R ,      окончательно:

v' = –μv²/R ;

Rdv/v² = –μdt ;

R/v – R/Vo = μt ;

R/v = R/Vo + μt ;

v = 1/[ 1/Vo + μt/R ] ;

ds = 1/[ 1/Vo + μt/R ] dt = [R/μ] d( 1/Vo + μt/R )/[ 1/Vo + μt/R ] ;

s = [R/μ] ln| Vo ( 1/Vo + μt/R ) | = [R/μ] ln|Vo/v| ;

v = Vo exp(–μs/R) = Vo exp(–μφ)        – это будет скорость конькобежца после смычки.

Теперь запишем третий Закон Ньютона на наклонном участке:

v' = F/m – Fсопр/m – μgcosφ – gsinφ ;

F = СSρu²/2 + μmg ;

v' = – СSρv²/[2m] – ( gsinφ – СSρu²/[2m] – μg(1–cosφ) ) ;

Обозначим ускорение возвратных бесскоростных сил,
как b = gsinφ – СSρu²/[2m] – μg(1–cosφ) ,

а величину 2m/[СSρ] = L – как тормозную константу, тогда:

v' = – v²/L – b ;

dv/[ v²/L + b ] = –dt ;

dv/[ v²/(bL) + 1 ] = –bdt ;

d(v/√[bL]) / [ (v/√[bL])² + 1 ] = – √[b/L] dt ;

arctg(v/√[bL]) – arctg(V/√[bL]) = √[b/L] t ;

arctg(V/√[bL]) = arctg(v/√[bL]) – √[b/L] t ;

V/√[bL] = tg( arctg(v/√[bL]) – √[b/L] t ) ;

V = √[bL] tg( arctg(v/√[bL]) – √[b/L] t ) ;

ds = √[bL] tg( arctg(v/√[bL]) – √[b/L] t ) dt =
= – L tg( arctg(v/√[bL]) – √[b/L] t ) d( arctg(v/√[bL]) – √[b/L] t ) ;

s = L ln| cos( arctg(v/√[bL]) – √[b/L] t ) / cos( arctg(v/√[bL]) ) | ;

s = L ln| √[1+v²/(bL)] / √[1+V²/(bL)] | ;

Когда скорость V станет равна нулю – это и будет наивысшая точка:

s = L ln√[1+v²/(bL)] = L ln√[1+Vo²exp(–2μφ)/(bL)] ;

H = s sinφ ;

sinφ = h/so ,     где h и so – эталонные высоты и смещения, характеризующие наклон горки;

1–cosφ = 1 – √[1–(h/so)²] ≈ [1/2] (h/so)²,     где h и so – эталонные высоты и смещения, характеризующие наклон горки;

H = [s/so] h = [h/so] L ln√[1+Vo²exp(–2μarcsin[h/so])/(bL)] ;

bL = ( gsinφ – СSρu²/[2m] – μg(1–cosφ) ) 2m/[СSρ] =
= 2mg/[СSρ] ( h/so – [μ/2] (h/so)² ) – u²

H = 2m/[СSρ]*
*[h/so] ln√[ 1 + Vo²exp(–2μarcsin[h/so])/( 2mg/[СSρ] ( h/so – [μ/2] (h/so)² ) – u² ) ] ;

Как мы видим, нам необходима максимальная скорость конькобежца u. Будем считать, что это так невнятно дано в виде начальной скорости конькобежца. Учтём ещё, что в нашем случае: arcsin[h/so] ≈ h/so, (h/so)² << 1 и exp(–2μarcsin[h/so]) ≈ 1–2μh/so :

H = 2m/[СSρ] [h/so] ln√[ 1 + (1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) ] ;

Очевидно, что для того, чтобы «работающий ногами конькобежец» вообще мог достичь какой-либо наивысшей точки, нужно чтобы:

ln√[ 1 + (1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) ] > 0 ;

(1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) > 0 ;

2 [h/so] mg/[СSρVo²] > 1 ;

m/СS > ρVo²so/[2gh] ≈ 1.25*64*10/[ 2*9.8*0.5 ] ≈ 4000/49 ;

m/СS > 81.6 ;

Если считать, что CS = 1 м² , то масса конькобежца должна быть больше 82 кг, чтобы он, «продолжая работать ногами», вообще остановился.

* Допустим, что m/CS = 200 (тяжёлый и слабый), тогда:

H ≈ 2*200/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*200*9.8*0.5/[1.25*64*10] – 1 )]
≈ 16 ln√[ 1 + 0.998/1.45 ] ≈ 8.4 м.

* Допустим, что m/CS = 100 (средний параметр), тогда:

H ≈ 2*100/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*100*9.8*0.5/[1.25*64*10] – 1 )]
≈ 8 ln√[ 1 + 0.998/0.225 ] ≈ 13.5 м.

* Допустим, что m/CS = 82 (легко-пронырливый), тогда:

H ≈ 2*82/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*82*9.8*0.5/[1.25*64*10] – 1 )]
≈ 6.56 ln√[ 1 + 0.998/0.0045 ] ≈ 35 м.

* Допустим, что m/CS > 81.64 (всепреодолевающий на этом наклоне), тогда:

H ≈ 2*81.64/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*81.64*9.8*0.5/[1.25*64*10] – 1 )] ≈ бесконечность.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота