Ещё в глубокой древности человек замечал, что воздух оказывает давление на наземные предметы, особенно во время бурь и ураганов. Он пользовался этим давлением, заставляя ветер двигать парусные суда, вращать крылья ветряных мельниц. Однако долго не удавалось доказать, что воздух имеет вес. Только в XVII веке был поставлен опыт, доказавший весомость воздуха. Поводом к этому послужило случайное обстоятельство. В Италии в 1640 году герцог Тосканский задумал устроить фонтан на террасе своего дворца. Воду для этого фонтана должны были накачивать из соседнего озера, но вода не шла выше 32 футовм. Герцог обратился за разъяснениями к Галилею, тогда уже глубокому старцу. Великий ученый был смущен и не нашелся сразу, как объяснить это явление. И только ученик Галилея, Торричелли, после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута. Он пошел в своих исследованиях ещё дальше и в 1643 году изобрел прибор для измерения атмосферного давления — барометр
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
В Италии в 1640 году герцог Тосканский задумал устроить фонтан на террасе своего дворца. Воду для этого фонтана должны были накачивать из соседнего озера, но вода не шла выше 32 футовм. Герцог обратился за разъяснениями к Галилею, тогда уже глубокому старцу. Великий ученый был смущен и не нашелся сразу, как объяснить это явление. И только ученик Галилея, Торричелли, после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута. Он пошел в своих исследованиях ещё дальше и в 1643 году изобрел прибор для измерения атмосферного давления — барометр
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.